Loading…
Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields
We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the co...
Saved in:
Published in: | Physics of plasmas 2013-07, Vol.20 (7) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c323t-3420e59637c0e2ab4a1254d6c47cb57b10ee1e109667939abec8f736474462653 |
---|---|
cites | cdi_FETCH-LOGICAL-c323t-3420e59637c0e2ab4a1254d6c47cb57b10ee1e109667939abec8f736474462653 |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 20 |
creator | Perkins, L. J. Logan, B. G. Zimmerman, G. B. Werner, C. J. |
description | We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 104 T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities. |
doi_str_mv | 10.1063/1.4816813 |
format | article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22227961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_4816813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-3420e59637c0e2ab4a1254d6c47cb57b10ee1e109667939abec8f736474462653</originalsourceid><addsrcrecordid>eNotUE1LxDAQDaLgunrwHwQ8eeiaNGnSHmXxCxa8rOCtpOl0N9KmSyZF_RP-ZlN2h4GZN7z3GB4ht5ytOFPiga9kyVXJxRlZcFZWmVZans-7ZplS8vOSXCF-McakKsoF-dt-j1nrBvDoRm96im6YehMTQDp2NO4hDKOfbA8m0GYKnrrUO-9mSobW9JAuEKJLYjv6LoHkFmk3zY40mrCDiHTyLYREGA4BEKGl5mdWDGbnITpLOwd9i9fkojM9ws1pLsnH89N2_Zpt3l_e1o-bzIpcxEzInEFRKaEtg9w00vC8kK2yUtum0A1nABw4q5TSlahMA7bstFBSS6lyVYgluTv6jhhdjdZFsPv0vQcb6zyVrhRPrPsjy4YRMUBXH4IbTPitOavnuGten-IW__mrdPM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Perkins, L. J. ; Logan, B. G. ; Zimmerman, G. B. ; Werner, C. J.</creator><creatorcontrib>Perkins, L. J. ; Logan, B. G. ; Zimmerman, G. B. ; Werner, C. J.</creatorcontrib><description>We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 104 T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4816813</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ALPHA PARTICLES ; CAPSULES ; ELECTRON BEAM TARGETS ; INERTIAL CONFINEMENT ; ION BEAM TARGETS ; LASER TARGETS ; MAGNETIC FIELDS ; MAGNETOHYDRODYNAMICS ; PLASMA DENSITY ; PLASMA INSTABILITY ; PLASMA PRESSURE ; PLASMA SIMULATION ; THERMAL CONDUCTION ; THERMODYNAMICS ; THERMONUCLEAR IGNITION ; THERMONUCLEAR REACTORS</subject><ispartof>Physics of plasmas, 2013-07, Vol.20 (7)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-3420e59637c0e2ab4a1254d6c47cb57b10ee1e109667939abec8f736474462653</citedby><cites>FETCH-LOGICAL-c323t-3420e59637c0e2ab4a1254d6c47cb57b10ee1e109667939abec8f736474462653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,778,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22227961$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Perkins, L. J.</creatorcontrib><creatorcontrib>Logan, B. G.</creatorcontrib><creatorcontrib>Zimmerman, G. B.</creatorcontrib><creatorcontrib>Werner, C. J.</creatorcontrib><title>Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields</title><title>Physics of plasmas</title><description>We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 104 T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ALPHA PARTICLES</subject><subject>CAPSULES</subject><subject>ELECTRON BEAM TARGETS</subject><subject>INERTIAL CONFINEMENT</subject><subject>ION BEAM TARGETS</subject><subject>LASER TARGETS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>PLASMA DENSITY</subject><subject>PLASMA INSTABILITY</subject><subject>PLASMA PRESSURE</subject><subject>PLASMA SIMULATION</subject><subject>THERMAL CONDUCTION</subject><subject>THERMODYNAMICS</subject><subject>THERMONUCLEAR IGNITION</subject><subject>THERMONUCLEAR REACTORS</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotUE1LxDAQDaLgunrwHwQ8eeiaNGnSHmXxCxa8rOCtpOl0N9KmSyZF_RP-ZlN2h4GZN7z3GB4ht5ytOFPiga9kyVXJxRlZcFZWmVZans-7ZplS8vOSXCF-McakKsoF-dt-j1nrBvDoRm96im6YehMTQDp2NO4hDKOfbA8m0GYKnrrUO-9mSobW9JAuEKJLYjv6LoHkFmk3zY40mrCDiHTyLYREGA4BEKGl5mdWDGbnITpLOwd9i9fkojM9ws1pLsnH89N2_Zpt3l_e1o-bzIpcxEzInEFRKaEtg9w00vC8kK2yUtum0A1nABw4q5TSlahMA7bstFBSS6lyVYgluTv6jhhdjdZFsPv0vQcb6zyVrhRPrPsjy4YRMUBXH4IbTPitOavnuGten-IW__mrdPM</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Perkins, L. J.</creator><creator>Logan, B. G.</creator><creator>Zimmerman, G. B.</creator><creator>Werner, C. J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20130701</creationdate><title>Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields</title><author>Perkins, L. J. ; Logan, B. G. ; Zimmerman, G. B. ; Werner, C. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-3420e59637c0e2ab4a1254d6c47cb57b10ee1e109667939abec8f736474462653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ALPHA PARTICLES</topic><topic>CAPSULES</topic><topic>ELECTRON BEAM TARGETS</topic><topic>INERTIAL CONFINEMENT</topic><topic>ION BEAM TARGETS</topic><topic>LASER TARGETS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>PLASMA DENSITY</topic><topic>PLASMA INSTABILITY</topic><topic>PLASMA PRESSURE</topic><topic>PLASMA SIMULATION</topic><topic>THERMAL CONDUCTION</topic><topic>THERMODYNAMICS</topic><topic>THERMONUCLEAR IGNITION</topic><topic>THERMONUCLEAR REACTORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perkins, L. J.</creatorcontrib><creatorcontrib>Logan, B. G.</creatorcontrib><creatorcontrib>Zimmerman, G. B.</creatorcontrib><creatorcontrib>Werner, C. J.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perkins, L. J.</au><au>Logan, B. G.</au><au>Zimmerman, G. B.</au><au>Werner, C. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields</atitle><jtitle>Physics of plasmas</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>20</volume><issue>7</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><abstract>We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 104 T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.</abstract><cop>United States</cop><doi>10.1063/1.4816813</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2013-07, Vol.20 (7) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_22227961 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ALPHA PARTICLES CAPSULES ELECTRON BEAM TARGETS INERTIAL CONFINEMENT ION BEAM TARGETS LASER TARGETS MAGNETIC FIELDS MAGNETOHYDRODYNAMICS PLASMA DENSITY PLASMA INSTABILITY PLASMA PRESSURE PLASMA SIMULATION THERMAL CONDUCTION THERMODYNAMICS THERMONUCLEAR IGNITION THERMONUCLEAR REACTORS |
title | Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional%20simulations%20of%20thermonuclear%20burn%20in%20ignition-scale%20inertial%20confinement%20fusion%20targets%20under%20compressed%20axial%20magnetic%20fields&rft.jtitle=Physics%20of%20plasmas&rft.au=Perkins,%20L.%20J.&rft.date=2013-07-01&rft.volume=20&rft.issue=7&rft.issn=1070-664X&rft.eissn=1089-7674&rft_id=info:doi/10.1063/1.4816813&rft_dat=%3Ccrossref_osti_%3E10_1063_1_4816813%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-3420e59637c0e2ab4a1254d6c47cb57b10ee1e109667939abec8f736474462653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |