Loading…

Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields

We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the co...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2013-07, Vol.20 (7)
Main Authors: Perkins, L. J., Logan, B. G., Zimmerman, G. B., Werner, C. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-3420e59637c0e2ab4a1254d6c47cb57b10ee1e109667939abec8f736474462653
cites cdi_FETCH-LOGICAL-c323t-3420e59637c0e2ab4a1254d6c47cb57b10ee1e109667939abec8f736474462653
container_end_page
container_issue 7
container_start_page
container_title Physics of plasmas
container_volume 20
creator Perkins, L. J.
Logan, B. G.
Zimmerman, G. B.
Werner, C. J.
description We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 104 T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.
doi_str_mv 10.1063/1.4816813
format article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22227961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_4816813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-3420e59637c0e2ab4a1254d6c47cb57b10ee1e109667939abec8f736474462653</originalsourceid><addsrcrecordid>eNotUE1LxDAQDaLgunrwHwQ8eeiaNGnSHmXxCxa8rOCtpOl0N9KmSyZF_RP-ZlN2h4GZN7z3GB4ht5ytOFPiga9kyVXJxRlZcFZWmVZans-7ZplS8vOSXCF-McakKsoF-dt-j1nrBvDoRm96im6YehMTQDp2NO4hDKOfbA8m0GYKnrrUO-9mSobW9JAuEKJLYjv6LoHkFmk3zY40mrCDiHTyLYREGA4BEKGl5mdWDGbnITpLOwd9i9fkojM9ws1pLsnH89N2_Zpt3l_e1o-bzIpcxEzInEFRKaEtg9w00vC8kK2yUtum0A1nABw4q5TSlahMA7bstFBSS6lyVYgluTv6jhhdjdZFsPv0vQcb6zyVrhRPrPsjy4YRMUBXH4IbTPitOavnuGten-IW__mrdPM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Perkins, L. J. ; Logan, B. G. ; Zimmerman, G. B. ; Werner, C. J.</creator><creatorcontrib>Perkins, L. J. ; Logan, B. G. ; Zimmerman, G. B. ; Werner, C. J.</creatorcontrib><description>We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 104 T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4816813</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ALPHA PARTICLES ; CAPSULES ; ELECTRON BEAM TARGETS ; INERTIAL CONFINEMENT ; ION BEAM TARGETS ; LASER TARGETS ; MAGNETIC FIELDS ; MAGNETOHYDRODYNAMICS ; PLASMA DENSITY ; PLASMA INSTABILITY ; PLASMA PRESSURE ; PLASMA SIMULATION ; THERMAL CONDUCTION ; THERMODYNAMICS ; THERMONUCLEAR IGNITION ; THERMONUCLEAR REACTORS</subject><ispartof>Physics of plasmas, 2013-07, Vol.20 (7)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-3420e59637c0e2ab4a1254d6c47cb57b10ee1e109667939abec8f736474462653</citedby><cites>FETCH-LOGICAL-c323t-3420e59637c0e2ab4a1254d6c47cb57b10ee1e109667939abec8f736474462653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,778,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22227961$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Perkins, L. J.</creatorcontrib><creatorcontrib>Logan, B. G.</creatorcontrib><creatorcontrib>Zimmerman, G. B.</creatorcontrib><creatorcontrib>Werner, C. J.</creatorcontrib><title>Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields</title><title>Physics of plasmas</title><description>We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 104 T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ALPHA PARTICLES</subject><subject>CAPSULES</subject><subject>ELECTRON BEAM TARGETS</subject><subject>INERTIAL CONFINEMENT</subject><subject>ION BEAM TARGETS</subject><subject>LASER TARGETS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>PLASMA DENSITY</subject><subject>PLASMA INSTABILITY</subject><subject>PLASMA PRESSURE</subject><subject>PLASMA SIMULATION</subject><subject>THERMAL CONDUCTION</subject><subject>THERMODYNAMICS</subject><subject>THERMONUCLEAR IGNITION</subject><subject>THERMONUCLEAR REACTORS</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotUE1LxDAQDaLgunrwHwQ8eeiaNGnSHmXxCxa8rOCtpOl0N9KmSyZF_RP-ZlN2h4GZN7z3GB4ht5ytOFPiga9kyVXJxRlZcFZWmVZans-7ZplS8vOSXCF-McakKsoF-dt-j1nrBvDoRm96im6YehMTQDp2NO4hDKOfbA8m0GYKnrrUO-9mSobW9JAuEKJLYjv6LoHkFmk3zY40mrCDiHTyLYREGA4BEKGl5mdWDGbnITpLOwd9i9fkojM9ws1pLsnH89N2_Zpt3l_e1o-bzIpcxEzInEFRKaEtg9w00vC8kK2yUtum0A1nABw4q5TSlahMA7bstFBSS6lyVYgluTv6jhhdjdZFsPv0vQcb6zyVrhRPrPsjy4YRMUBXH4IbTPitOavnuGten-IW__mrdPM</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Perkins, L. J.</creator><creator>Logan, B. G.</creator><creator>Zimmerman, G. B.</creator><creator>Werner, C. J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20130701</creationdate><title>Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields</title><author>Perkins, L. J. ; Logan, B. G. ; Zimmerman, G. B. ; Werner, C. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-3420e59637c0e2ab4a1254d6c47cb57b10ee1e109667939abec8f736474462653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ALPHA PARTICLES</topic><topic>CAPSULES</topic><topic>ELECTRON BEAM TARGETS</topic><topic>INERTIAL CONFINEMENT</topic><topic>ION BEAM TARGETS</topic><topic>LASER TARGETS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>PLASMA DENSITY</topic><topic>PLASMA INSTABILITY</topic><topic>PLASMA PRESSURE</topic><topic>PLASMA SIMULATION</topic><topic>THERMAL CONDUCTION</topic><topic>THERMODYNAMICS</topic><topic>THERMONUCLEAR IGNITION</topic><topic>THERMONUCLEAR REACTORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perkins, L. J.</creatorcontrib><creatorcontrib>Logan, B. G.</creatorcontrib><creatorcontrib>Zimmerman, G. B.</creatorcontrib><creatorcontrib>Werner, C. J.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perkins, L. J.</au><au>Logan, B. G.</au><au>Zimmerman, G. B.</au><au>Werner, C. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields</atitle><jtitle>Physics of plasmas</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>20</volume><issue>7</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><abstract>We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 104 T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.</abstract><cop>United States</cop><doi>10.1063/1.4816813</doi></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2013-07, Vol.20 (7)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_22227961
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
ALPHA PARTICLES
CAPSULES
ELECTRON BEAM TARGETS
INERTIAL CONFINEMENT
ION BEAM TARGETS
LASER TARGETS
MAGNETIC FIELDS
MAGNETOHYDRODYNAMICS
PLASMA DENSITY
PLASMA INSTABILITY
PLASMA PRESSURE
PLASMA SIMULATION
THERMAL CONDUCTION
THERMODYNAMICS
THERMONUCLEAR IGNITION
THERMONUCLEAR REACTORS
title Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional%20simulations%20of%20thermonuclear%20burn%20in%20ignition-scale%20inertial%20confinement%20fusion%20targets%20under%20compressed%20axial%20magnetic%20fields&rft.jtitle=Physics%20of%20plasmas&rft.au=Perkins,%20L.%20J.&rft.date=2013-07-01&rft.volume=20&rft.issue=7&rft.issn=1070-664X&rft.eissn=1089-7674&rft_id=info:doi/10.1063/1.4816813&rft_dat=%3Ccrossref_osti_%3E10_1063_1_4816813%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-3420e59637c0e2ab4a1254d6c47cb57b10ee1e109667939abec8f736474462653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true