Loading…
Dependence of the mechanical behavior of alloys on their electron work function—An alternative parameter for materials design
In this article, we demonstrate that the electron work function (EWF) as an intrinsic parameter can provide information or clues in a simple or straightforward way for material design, modification, and development. A higher work function of a material represents a more stable electronic state, whic...
Saved in:
Published in: | Applied physics letters 2013-12, Vol.103 (26) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, we demonstrate that the electron work function (EWF) as an intrinsic parameter can provide information or clues in a simple or straightforward way for material design, modification, and development. A higher work function of a material represents a more stable electronic state, which consequently generates a higher resistance to any attempt of changing the electronic state and other corresponding states, e.g., changes in structure or microstructure caused by mechanical and electrochemical actions. Using Cu-Ni alloy as an example, we demonstrate the correlation between the EWF and Young's modulus of the material as well as its hardness. The properties of a material can be modified using elements with appropriate work functions. This is also applicable for tailoring inter-phase boundaries or interfaces. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4852675 |