Loading…
The one-electron oxidation of a dithiolate molecule: the importance of chemical intuition
A series of nine commonly used density functional methods were assessed to accurately predict the oxidation potential of the (C2H2S2(-2)/C2H2S2(•-)) redox couple. It was found that due to their greater tendency for charge delocalization the GGA functionals predict a structure where the radical elect...
Saved in:
Published in: | The Journal of chemical physics 2014-05, Vol.140 (18), p.18A519-18A519 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A series of nine commonly used density functional methods were assessed to accurately predict the oxidation potential of the (C2H2S2(-2)/C2H2S2(•-)) redox couple. It was found that due to their greater tendency for charge delocalization the GGA functionals predict a structure where the radical electron is delocalized within the alkene backbone of C2H2S2(•-), whereas the hybrid functionals and the reference QCISD/cc-pVTZ predict that the radical electron remains localized on the sulfurs. However, chemical intuition suggests that the results obtained with the GGA functionals should be correct. Indeed, with the use of the geometries obtained at the HCTH/6-311++G(3df,3pd) level of theory both the QCISD and hybrid DFT methods yield a molecule with a delocalized electron. Notably, this new molecule lies at least 53 kJ mol(-1) lower in energy than the previously optimized one that had a localized radical. Using these new structures the calculated oxidation potential was found to be 2.71-2.97 V for the nine DFT functionals tested. The M06-L functional provided the best agreement with the QCISD/cc-pVTZ reference oxidation potential of 3.28 V. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4867537 |