Loading…

Exciton localization-delocalization transition in an extended dendrimer

Exciton-mediated quantum state transfer between the periphery and the core of an extended dendrimer is investigated numerically. By mapping the dynamics onto that of a linear chain, it is shown that a localization-delocalization transition arises for a critical value of the generation number G(c) ≈...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2013-12, Vol.139 (23), p.234111-234111
Main Author: Pouthier, Vincent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Exciton-mediated quantum state transfer between the periphery and the core of an extended dendrimer is investigated numerically. By mapping the dynamics onto that of a linear chain, it is shown that a localization-delocalization transition arises for a critical value of the generation number G(c) ≈ 5. This transition originates in the quantum interferences experienced by the excitonic wave due to the multiple scatterings that arise each time the wave tunnels from one generation to another. These results suggest that only small-size dendrimers could be used for designing an efficient quantum communication protocol.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4849756