Loading…
Comparison of classical and quantal calculations of helium three-body recombination
A general method to study classical scattering in n-dimension is developed. Through classical trajectory calculations, the three-body recombination is computed as a function of the collision energy for helium atoms, as an example. Quantum calculations are also performed for the J(Π) = 0(+) symmetry...
Saved in:
Published in: | The Journal of chemical physics 2014-01, Vol.140 (4), p.044307-044307 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A general method to study classical scattering in n-dimension is developed. Through classical trajectory calculations, the three-body recombination is computed as a function of the collision energy for helium atoms, as an example. Quantum calculations are also performed for the J(Π) = 0(+) symmetry of the three-body recombination rate in order to compare with the classical results, yielding good agreement for E ≳ 1 K. The classical threshold law is derived and numerically confirmed for the Newtonian three-body recombination rate. Finally, a relationship is found between the quantum and classical three-body hard hypersphere elastic cross sections which is analogous to the well-known shadow scattering in two-body collisions. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4861851 |