Loading…

Micro-fluidics and integrated optics glass sensor for in-line micro-probing of nuclear samples

We study the miniaturization of Thermal Lens Spectrometry (TLS) towards Lab-on-chip integration in order to reduce the volume of fluid assays in nuclear process control. TLS is of great interest in this context since it combines the advantages of optical detection methods with an inherent suitabilit...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nuclear science 2012-08, Vol.59 (4)
Main Authors: Schimpf, A., Bucci, D., Broquin, J.E., Canto, F., Magnaldo, A., Couston, L.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 4
container_start_page
container_title IEEE transactions on nuclear science
container_volume 59
creator Schimpf, A.
Bucci, D.
Broquin, J.E.
Canto, F.
Magnaldo, A.
Couston, L.
description We study the miniaturization of Thermal Lens Spectrometry (TLS) towards Lab-on-chip integration in order to reduce the volume of fluid assays in nuclear process control. TLS is of great interest in this context since it combines the advantages of optical detection methods with an inherent suitability for small-scale samples. After validating the experimental principle in a classical thermal lens crossed-beam setup, we show the integration of a Young-interferometer with a microcapillary on a glass substrate, reducing the necessary sample size to 400 nl. The interferometer translates the photo-thermally induced refractive index change in the fluid to a phase shift of the fringe pattern, which can then be detected by a camera. Measurements of Co(II) in ethanol yield a detection limit of c = 5 x 10{sup -4} M for the crossed-beam setup and c = 6 x 10{sup -3} M for the integrated sensor. At an interaction length of 10 m, it detects a minimum absorbance of K = 1.2 x 10{sup -4} in a probed volume of 14 pl. (authors)
doi_str_mv 10.1109/TNS.2012.2205704
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22273999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22273999</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_222739993</originalsourceid><addsrcrecordid>eNqNi01PwzAQRC0EEuHjztESZ6e2GyvxuQJxgUt7bmWcTVjkriOv-_9bED-Aw2j0Rm-EeDK6NUb71e5j21ptbGutdr3urkRjnBuUcf1wLRqtzaB85_2tuGP-vmDntGvE_h1jyWpKJxwxsgw0SqQKcwkVRpmX-rPOKTBLBuJc5HQJkkpIII-_76XkT6RZ5knSKSYIRXI4Lgn4QdxMITE8_vW9eH592W3eVOaKB45YIX7FTASxHqy1_dp7v_6fdQZ9okty</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Micro-fluidics and integrated optics glass sensor for in-line micro-probing of nuclear samples</title><source>IEEE Xplore (Online service)</source><creator>Schimpf, A. ; Bucci, D. ; Broquin, J.E. ; Canto, F. ; Magnaldo, A. ; Couston, L.</creator><creatorcontrib>Schimpf, A. ; Bucci, D. ; Broquin, J.E. ; Canto, F. ; Magnaldo, A. ; Couston, L.</creatorcontrib><description>We study the miniaturization of Thermal Lens Spectrometry (TLS) towards Lab-on-chip integration in order to reduce the volume of fluid assays in nuclear process control. TLS is of great interest in this context since it combines the advantages of optical detection methods with an inherent suitability for small-scale samples. After validating the experimental principle in a classical thermal lens crossed-beam setup, we show the integration of a Young-interferometer with a microcapillary on a glass substrate, reducing the necessary sample size to 400 nl. The interferometer translates the photo-thermally induced refractive index change in the fluid to a phase shift of the fringe pattern, which can then be detected by a camera. Measurements of Co(II) in ethanol yield a detection limit of c = 5 x 10{sup -4} M for the crossed-beam setup and c = 6 x 10{sup -3} M for the integrated sensor. At an interaction length of 10 m, it detects a minimum absorbance of K = 1.2 x 10{sup -4} in a probed volume of 14 pl. (authors)</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2012.2205704</identifier><language>eng</language><publisher>United States</publisher><subject>ABSORPTION ; BOROSILICATE GLASS ; CONTROL ; FEASIBILITY STUDIES ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; INTERFEROMETERS ; ION EXCHANGE ; MINIATURIZATION ; NUCLEAR FUEL CYCLE AND FUEL MATERIALS ; REFRACTIVE INDEX ; REPROCESSING ; SENSITIVITY ; SENSORS ; SPENT FUELS ; VOLUME</subject><ispartof>IEEE transactions on nuclear science, 2012-08, Vol.59 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22273999$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schimpf, A.</creatorcontrib><creatorcontrib>Bucci, D.</creatorcontrib><creatorcontrib>Broquin, J.E.</creatorcontrib><creatorcontrib>Canto, F.</creatorcontrib><creatorcontrib>Magnaldo, A.</creatorcontrib><creatorcontrib>Couston, L.</creatorcontrib><title>Micro-fluidics and integrated optics glass sensor for in-line micro-probing of nuclear samples</title><title>IEEE transactions on nuclear science</title><description>We study the miniaturization of Thermal Lens Spectrometry (TLS) towards Lab-on-chip integration in order to reduce the volume of fluid assays in nuclear process control. TLS is of great interest in this context since it combines the advantages of optical detection methods with an inherent suitability for small-scale samples. After validating the experimental principle in a classical thermal lens crossed-beam setup, we show the integration of a Young-interferometer with a microcapillary on a glass substrate, reducing the necessary sample size to 400 nl. The interferometer translates the photo-thermally induced refractive index change in the fluid to a phase shift of the fringe pattern, which can then be detected by a camera. Measurements of Co(II) in ethanol yield a detection limit of c = 5 x 10{sup -4} M for the crossed-beam setup and c = 6 x 10{sup -3} M for the integrated sensor. At an interaction length of 10 m, it detects a minimum absorbance of K = 1.2 x 10{sup -4} in a probed volume of 14 pl. (authors)</description><subject>ABSORPTION</subject><subject>BOROSILICATE GLASS</subject><subject>CONTROL</subject><subject>FEASIBILITY STUDIES</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>INTERFEROMETERS</subject><subject>ION EXCHANGE</subject><subject>MINIATURIZATION</subject><subject>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</subject><subject>REFRACTIVE INDEX</subject><subject>REPROCESSING</subject><subject>SENSITIVITY</subject><subject>SENSORS</subject><subject>SPENT FUELS</subject><subject>VOLUME</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNi01PwzAQRC0EEuHjztESZ6e2GyvxuQJxgUt7bmWcTVjkriOv-_9bED-Aw2j0Rm-EeDK6NUb71e5j21ptbGutdr3urkRjnBuUcf1wLRqtzaB85_2tuGP-vmDntGvE_h1jyWpKJxwxsgw0SqQKcwkVRpmX-rPOKTBLBuJc5HQJkkpIII-_76XkT6RZ5knSKSYIRXI4Lgn4QdxMITE8_vW9eH592W3eVOaKB45YIX7FTASxHqy1_dp7v_6fdQZ9okty</recordid><startdate>20120815</startdate><enddate>20120815</enddate><creator>Schimpf, A.</creator><creator>Bucci, D.</creator><creator>Broquin, J.E.</creator><creator>Canto, F.</creator><creator>Magnaldo, A.</creator><creator>Couston, L.</creator><scope>OTOTI</scope></search><sort><creationdate>20120815</creationdate><title>Micro-fluidics and integrated optics glass sensor for in-line micro-probing of nuclear samples</title><author>Schimpf, A. ; Bucci, D. ; Broquin, J.E. ; Canto, F. ; Magnaldo, A. ; Couston, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_222739993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ABSORPTION</topic><topic>BOROSILICATE GLASS</topic><topic>CONTROL</topic><topic>FEASIBILITY STUDIES</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>INTERFEROMETERS</topic><topic>ION EXCHANGE</topic><topic>MINIATURIZATION</topic><topic>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</topic><topic>REFRACTIVE INDEX</topic><topic>REPROCESSING</topic><topic>SENSITIVITY</topic><topic>SENSORS</topic><topic>SPENT FUELS</topic><topic>VOLUME</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schimpf, A.</creatorcontrib><creatorcontrib>Bucci, D.</creatorcontrib><creatorcontrib>Broquin, J.E.</creatorcontrib><creatorcontrib>Canto, F.</creatorcontrib><creatorcontrib>Magnaldo, A.</creatorcontrib><creatorcontrib>Couston, L.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schimpf, A.</au><au>Bucci, D.</au><au>Broquin, J.E.</au><au>Canto, F.</au><au>Magnaldo, A.</au><au>Couston, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro-fluidics and integrated optics glass sensor for in-line micro-probing of nuclear samples</atitle><jtitle>IEEE transactions on nuclear science</jtitle><date>2012-08-15</date><risdate>2012</risdate><volume>59</volume><issue>4</issue><issn>0018-9499</issn><eissn>1558-1578</eissn><abstract>We study the miniaturization of Thermal Lens Spectrometry (TLS) towards Lab-on-chip integration in order to reduce the volume of fluid assays in nuclear process control. TLS is of great interest in this context since it combines the advantages of optical detection methods with an inherent suitability for small-scale samples. After validating the experimental principle in a classical thermal lens crossed-beam setup, we show the integration of a Young-interferometer with a microcapillary on a glass substrate, reducing the necessary sample size to 400 nl. The interferometer translates the photo-thermally induced refractive index change in the fluid to a phase shift of the fringe pattern, which can then be detected by a camera. Measurements of Co(II) in ethanol yield a detection limit of c = 5 x 10{sup -4} M for the crossed-beam setup and c = 6 x 10{sup -3} M for the integrated sensor. At an interaction length of 10 m, it detects a minimum absorbance of K = 1.2 x 10{sup -4} in a probed volume of 14 pl. (authors)</abstract><cop>United States</cop><doi>10.1109/TNS.2012.2205704</doi></addata></record>
fulltext fulltext
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2012-08, Vol.59 (4)
issn 0018-9499
1558-1578
language eng
recordid cdi_osti_scitechconnect_22273999
source IEEE Xplore (Online service)
subjects ABSORPTION
BOROSILICATE GLASS
CONTROL
FEASIBILITY STUDIES
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
INTERFEROMETERS
ION EXCHANGE
MINIATURIZATION
NUCLEAR FUEL CYCLE AND FUEL MATERIALS
REFRACTIVE INDEX
REPROCESSING
SENSITIVITY
SENSORS
SPENT FUELS
VOLUME
title Micro-fluidics and integrated optics glass sensor for in-line micro-probing of nuclear samples
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro-fluidics%20and%20integrated%20optics%20glass%20sensor%20for%20in-line%20micro-probing%20of%20nuclear%20samples&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Schimpf,%20A.&rft.date=2012-08-15&rft.volume=59&rft.issue=4&rft.issn=0018-9499&rft.eissn=1558-1578&rft_id=info:doi/10.1109/TNS.2012.2205704&rft_dat=%3Costi%3E22273999%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_222739993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true