Loading…

Misfit strain-temperature phase diagrams and domain stability of asymmetric ferroelectric capacitors: Thermodynamic calculation and phase-field simulation

Thermodynamic calculation and phase-field simulation have been conducted to investigate the misfit strain-temperature phase diagrams, dielectric property, and domain stability of asymmetric ferroelectric capacitors (FCs), with considering the effects of dissimilar screening properties and work funct...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2014-03, Vol.115 (9)
Main Authors: Chen, W. J., Zheng, Yue, Wang, B., Ma, D. C., Wu, C. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thermodynamic calculation and phase-field simulation have been conducted to investigate the misfit strain-temperature phase diagrams, dielectric property, and domain stability of asymmetric ferroelectric capacitors (FCs), with considering the effects of dissimilar screening properties and work function steps at the two interfaces. The distinct features of asymmetric FCs from their symmetric counterparts have been revealed and discussed. Polar states with nonzero out-of-plane polarization in parallel with the built-in field are found preferential to form in asymmetric FCs. Meanwhile, the built-in field breaks the degeneracy of states with out-of-plane polarization in anti-directions. This leads to the necessity of redefining phases according to the bistability of out-of-plane polarization. Moreover, the phase stability as well as the dielectric behavior can be significantly controlled by the properties of electrodes, misfit strain, and temperature. The phase-field simulation result also shows that polydomain instability would happen in asymmetric FCs as the equivalence of domain stability in anti-directions is destroyed.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4867480