Loading…

Efficient Raman generation in a waveguide: A route to ultrafast quantum random number generation

The inherent uncertainty in quantum mechanics offers a source of true randomness which can be used to produce unbreakable cryptographic keys. We discuss the development of a high-speed random number generator based on the quantum phase fluctuations in spontaneously initiated stimulated Raman scatter...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2014-02, Vol.104 (5)
Main Authors: England, D. G., Bustard, P. J., Moffatt, D. J., Nunn, J., Lausten, R., Sussman, B. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The inherent uncertainty in quantum mechanics offers a source of true randomness which can be used to produce unbreakable cryptographic keys. We discuss the development of a high-speed random number generator based on the quantum phase fluctuations in spontaneously initiated stimulated Raman scattering (SISRS). We utilize the tight confinement and long interaction length available in a Potassium Titanyl Phosphate waveguide to generate highly efficient SISRS using nanojoule pulse energies, reducing the high pump power requirements of the previous approaches. We measure the random phase of the Stokes output using a simple interferometric setup to yield quantum random numbers at 145 Mbps.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4864095