Loading…
Carrier density and delocalization signatures in doped carbon nanotubes from quantitative magnetic resonance
High-performance semiconductor materials and devices are needed to supply the growing energy and computing demand. Organic semiconductors (OSCs) are attractive options for opto-electronic devices, due to their low cost, extensive tunability, easy fabrication, and flexibility. Semiconducting single-w...
Saved in:
Published in: | Nanoscale horizons 2024-01, Vol.9 (2), p.278-284 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-98ae4ecafbad12dc387dbff453d30f0389e3a750361c9db4c4f10121a83f02ba3 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-98ae4ecafbad12dc387dbff453d30f0389e3a750361c9db4c4f10121a83f02ba3 |
container_end_page | 284 |
container_issue | 2 |
container_start_page | 278 |
container_title | Nanoscale horizons |
container_volume | 9 |
creator | Hermosilla-Palacios, M. Alejandra Martinez, Marissa Doud, Evan A Hertel, Tobias Spokoyny, Alexander M Cambré, Sofie Wenseleers, Wim Kim, Yong-Hyun Ferguson, Andrew J Blackburn, Jeffrey L |
description | High-performance semiconductor materials and devices are needed to supply the growing energy and computing demand. Organic semiconductors (OSCs) are attractive options for opto-electronic devices, due to their low cost, extensive tunability, easy fabrication, and flexibility. Semiconducting single-walled carbon nanotubes (s-SWCNTs) have been extensively studied due to their high carrier mobility, stability and opto-electronic tunability. Although molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility. In this work we demonstrate a direct quantification of charge carrier density, and by extension carrier mobility, in chemically doped s-SWCNTs by a nuclear magnetic resonance approach. The experimental results are verified by a phase-space filling doping model, and we suggest this approach should be broadly applicable for OSCs. Our results show that hole mobility in doped s-SWCNT networks increases with increasing charge carrier density, a finding that is contrary to that expected for mobility limited by ionized impurity scattering. We discuss the implications of this important finding for additional tunability and applicability of s-SWCNT and OSC devices.
Molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), however, a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility. |
doi_str_mv | 10.1039/d3nh00480e |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2228407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919352033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-98ae4ecafbad12dc387dbff453d30f0389e3a750361c9db4c4f10121a83f02ba3</originalsourceid><addsrcrecordid>eNpd0U1rFTEUBuAgii21G_dK0E0Rrp58zExmWa6tFYpudB0yyUmbMpPcJhmh_nqjt17BVQ68zzkQXkJeMnjPQIwfnIi3AFIBPiHHHLpu0w-9fHqYu_6InJZyBwBMsWFU4jk5EgqkVLI_JvPW5BwwU4exhPpATXRtnpM1c_hpakiRlnATTV0zFhoidWmHjlqTpxZFE1Ndp5b4nBZ6v5pYQ21rP5Au5iZiDZa2xdSgxRfkmTdzwdPH94R8v7z4tr3aXH_99Hl7fr2xEqBuRmVQojV-Mo5xZ4Ua3OS97IQT4EGoEYUZOhA9s6ObpJWeAePMKOGBT0ackDf7u6nUoIsNFe2tTTGirZpzriQMDZ3t0S6n-xVL1UsoFufZRExr0VyNg1S9UqrRt__Ru7Tm2L6g-chG0XEQoql3e2VzKiWj17scFpMfNAP9uyv9UXy5-tPVRcOvH0-u04LuQP8208CrPcjFHtJ_ZYtfFKiZxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919352033</pqid></control><display><type>article</type><title>Carrier density and delocalization signatures in doped carbon nanotubes from quantitative magnetic resonance</title><source>Royal Society of Chemistry</source><creator>Hermosilla-Palacios, M. Alejandra ; Martinez, Marissa ; Doud, Evan A ; Hertel, Tobias ; Spokoyny, Alexander M ; Cambré, Sofie ; Wenseleers, Wim ; Kim, Yong-Hyun ; Ferguson, Andrew J ; Blackburn, Jeffrey L</creator><creatorcontrib>Hermosilla-Palacios, M. Alejandra ; Martinez, Marissa ; Doud, Evan A ; Hertel, Tobias ; Spokoyny, Alexander M ; Cambré, Sofie ; Wenseleers, Wim ; Kim, Yong-Hyun ; Ferguson, Andrew J ; Blackburn, Jeffrey L ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>High-performance semiconductor materials and devices are needed to supply the growing energy and computing demand. Organic semiconductors (OSCs) are attractive options for opto-electronic devices, due to their low cost, extensive tunability, easy fabrication, and flexibility. Semiconducting single-walled carbon nanotubes (s-SWCNTs) have been extensively studied due to their high carrier mobility, stability and opto-electronic tunability. Although molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility. In this work we demonstrate a direct quantification of charge carrier density, and by extension carrier mobility, in chemically doped s-SWCNTs by a nuclear magnetic resonance approach. The experimental results are verified by a phase-space filling doping model, and we suggest this approach should be broadly applicable for OSCs. Our results show that hole mobility in doped s-SWCNT networks increases with increasing charge carrier density, a finding that is contrary to that expected for mobility limited by ionized impurity scattering. We discuss the implications of this important finding for additional tunability and applicability of s-SWCNT and OSC devices.
Molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), however, a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility.</description><identifier>ISSN: 2055-6756</identifier><identifier>ISSN: 2055-6764</identifier><identifier>EISSN: 2055-6764</identifier><identifier>DOI: 10.1039/d3nh00480e</identifier><identifier>PMID: 38044846</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>carbon nanotubes ; Carrier density ; Carrier mobility ; Charge transfer ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Current carriers ; Doping ; Hole mobility ; NANOSCIENCE AND NANOTECHNOLOGY ; NMR ; Nuclear magnetic resonance ; Optoelectronic devices ; Organic semiconductors ; organics ; Semiconductor materials ; Single wall carbon nanotubes</subject><ispartof>Nanoscale horizons, 2024-01, Vol.9 (2), p.278-284</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-98ae4ecafbad12dc387dbff453d30f0389e3a750361c9db4c4f10121a83f02ba3</citedby><cites>FETCH-LOGICAL-c400t-98ae4ecafbad12dc387dbff453d30f0389e3a750361c9db4c4f10121a83f02ba3</cites><orcidid>0000-0003-4255-2068 ; 0000-0002-3509-0945 ; 0000-0001-7471-7678 ; 0000-0001-7907-4341 ; 0000-0002-9237-5891 ; 0000-0002-5683-6240 ; 0000-0003-2544-1753 ; 0000000179074341 ; 0000000342552068 ; 0000000235090945 ; 0000000325441753 ; 0000000256836240 ; 0000000174717678 ; 0000000292375891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38044846$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2228407$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hermosilla-Palacios, M. Alejandra</creatorcontrib><creatorcontrib>Martinez, Marissa</creatorcontrib><creatorcontrib>Doud, Evan A</creatorcontrib><creatorcontrib>Hertel, Tobias</creatorcontrib><creatorcontrib>Spokoyny, Alexander M</creatorcontrib><creatorcontrib>Cambré, Sofie</creatorcontrib><creatorcontrib>Wenseleers, Wim</creatorcontrib><creatorcontrib>Kim, Yong-Hyun</creatorcontrib><creatorcontrib>Ferguson, Andrew J</creatorcontrib><creatorcontrib>Blackburn, Jeffrey L</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Carrier density and delocalization signatures in doped carbon nanotubes from quantitative magnetic resonance</title><title>Nanoscale horizons</title><addtitle>Nanoscale Horiz</addtitle><description>High-performance semiconductor materials and devices are needed to supply the growing energy and computing demand. Organic semiconductors (OSCs) are attractive options for opto-electronic devices, due to their low cost, extensive tunability, easy fabrication, and flexibility. Semiconducting single-walled carbon nanotubes (s-SWCNTs) have been extensively studied due to their high carrier mobility, stability and opto-electronic tunability. Although molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility. In this work we demonstrate a direct quantification of charge carrier density, and by extension carrier mobility, in chemically doped s-SWCNTs by a nuclear magnetic resonance approach. The experimental results are verified by a phase-space filling doping model, and we suggest this approach should be broadly applicable for OSCs. Our results show that hole mobility in doped s-SWCNT networks increases with increasing charge carrier density, a finding that is contrary to that expected for mobility limited by ionized impurity scattering. We discuss the implications of this important finding for additional tunability and applicability of s-SWCNT and OSC devices.
Molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), however, a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility.</description><subject>carbon nanotubes</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Charge transfer</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Current carriers</subject><subject>Doping</subject><subject>Hole mobility</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optoelectronic devices</subject><subject>Organic semiconductors</subject><subject>organics</subject><subject>Semiconductor materials</subject><subject>Single wall carbon nanotubes</subject><issn>2055-6756</issn><issn>2055-6764</issn><issn>2055-6764</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0U1rFTEUBuAgii21G_dK0E0Rrp58zExmWa6tFYpudB0yyUmbMpPcJhmh_nqjt17BVQ68zzkQXkJeMnjPQIwfnIi3AFIBPiHHHLpu0w-9fHqYu_6InJZyBwBMsWFU4jk5EgqkVLI_JvPW5BwwU4exhPpATXRtnpM1c_hpakiRlnATTV0zFhoidWmHjlqTpxZFE1Ndp5b4nBZ6v5pYQ21rP5Au5iZiDZa2xdSgxRfkmTdzwdPH94R8v7z4tr3aXH_99Hl7fr2xEqBuRmVQojV-Mo5xZ4Ua3OS97IQT4EGoEYUZOhA9s6ObpJWeAePMKOGBT0ackDf7u6nUoIsNFe2tTTGirZpzriQMDZ3t0S6n-xVL1UsoFufZRExr0VyNg1S9UqrRt__Ru7Tm2L6g-chG0XEQoql3e2VzKiWj17scFpMfNAP9uyv9UXy5-tPVRcOvH0-u04LuQP8208CrPcjFHtJ_ZYtfFKiZxg</recordid><startdate>20240129</startdate><enddate>20240129</enddate><creator>Hermosilla-Palacios, M. Alejandra</creator><creator>Martinez, Marissa</creator><creator>Doud, Evan A</creator><creator>Hertel, Tobias</creator><creator>Spokoyny, Alexander M</creator><creator>Cambré, Sofie</creator><creator>Wenseleers, Wim</creator><creator>Kim, Yong-Hyun</creator><creator>Ferguson, Andrew J</creator><creator>Blackburn, Jeffrey L</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4255-2068</orcidid><orcidid>https://orcid.org/0000-0002-3509-0945</orcidid><orcidid>https://orcid.org/0000-0001-7471-7678</orcidid><orcidid>https://orcid.org/0000-0001-7907-4341</orcidid><orcidid>https://orcid.org/0000-0002-9237-5891</orcidid><orcidid>https://orcid.org/0000-0002-5683-6240</orcidid><orcidid>https://orcid.org/0000-0003-2544-1753</orcidid><orcidid>https://orcid.org/0000000179074341</orcidid><orcidid>https://orcid.org/0000000342552068</orcidid><orcidid>https://orcid.org/0000000235090945</orcidid><orcidid>https://orcid.org/0000000325441753</orcidid><orcidid>https://orcid.org/0000000256836240</orcidid><orcidid>https://orcid.org/0000000174717678</orcidid><orcidid>https://orcid.org/0000000292375891</orcidid></search><sort><creationdate>20240129</creationdate><title>Carrier density and delocalization signatures in doped carbon nanotubes from quantitative magnetic resonance</title><author>Hermosilla-Palacios, M. Alejandra ; Martinez, Marissa ; Doud, Evan A ; Hertel, Tobias ; Spokoyny, Alexander M ; Cambré, Sofie ; Wenseleers, Wim ; Kim, Yong-Hyun ; Ferguson, Andrew J ; Blackburn, Jeffrey L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-98ae4ecafbad12dc387dbff453d30f0389e3a750361c9db4c4f10121a83f02ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>carbon nanotubes</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Charge transfer</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Current carriers</topic><topic>Doping</topic><topic>Hole mobility</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optoelectronic devices</topic><topic>Organic semiconductors</topic><topic>organics</topic><topic>Semiconductor materials</topic><topic>Single wall carbon nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hermosilla-Palacios, M. Alejandra</creatorcontrib><creatorcontrib>Martinez, Marissa</creatorcontrib><creatorcontrib>Doud, Evan A</creatorcontrib><creatorcontrib>Hertel, Tobias</creatorcontrib><creatorcontrib>Spokoyny, Alexander M</creatorcontrib><creatorcontrib>Cambré, Sofie</creatorcontrib><creatorcontrib>Wenseleers, Wim</creatorcontrib><creatorcontrib>Kim, Yong-Hyun</creatorcontrib><creatorcontrib>Ferguson, Andrew J</creatorcontrib><creatorcontrib>Blackburn, Jeffrey L</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hermosilla-Palacios, M. Alejandra</au><au>Martinez, Marissa</au><au>Doud, Evan A</au><au>Hertel, Tobias</au><au>Spokoyny, Alexander M</au><au>Cambré, Sofie</au><au>Wenseleers, Wim</au><au>Kim, Yong-Hyun</au><au>Ferguson, Andrew J</au><au>Blackburn, Jeffrey L</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carrier density and delocalization signatures in doped carbon nanotubes from quantitative magnetic resonance</atitle><jtitle>Nanoscale horizons</jtitle><addtitle>Nanoscale Horiz</addtitle><date>2024-01-29</date><risdate>2024</risdate><volume>9</volume><issue>2</issue><spage>278</spage><epage>284</epage><pages>278-284</pages><issn>2055-6756</issn><issn>2055-6764</issn><eissn>2055-6764</eissn><abstract>High-performance semiconductor materials and devices are needed to supply the growing energy and computing demand. Organic semiconductors (OSCs) are attractive options for opto-electronic devices, due to their low cost, extensive tunability, easy fabrication, and flexibility. Semiconducting single-walled carbon nanotubes (s-SWCNTs) have been extensively studied due to their high carrier mobility, stability and opto-electronic tunability. Although molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility. In this work we demonstrate a direct quantification of charge carrier density, and by extension carrier mobility, in chemically doped s-SWCNTs by a nuclear magnetic resonance approach. The experimental results are verified by a phase-space filling doping model, and we suggest this approach should be broadly applicable for OSCs. Our results show that hole mobility in doped s-SWCNT networks increases with increasing charge carrier density, a finding that is contrary to that expected for mobility limited by ionized impurity scattering. We discuss the implications of this important finding for additional tunability and applicability of s-SWCNT and OSC devices.
Molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), however, a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38044846</pmid><doi>10.1039/d3nh00480e</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4255-2068</orcidid><orcidid>https://orcid.org/0000-0002-3509-0945</orcidid><orcidid>https://orcid.org/0000-0001-7471-7678</orcidid><orcidid>https://orcid.org/0000-0001-7907-4341</orcidid><orcidid>https://orcid.org/0000-0002-9237-5891</orcidid><orcidid>https://orcid.org/0000-0002-5683-6240</orcidid><orcidid>https://orcid.org/0000-0003-2544-1753</orcidid><orcidid>https://orcid.org/0000000179074341</orcidid><orcidid>https://orcid.org/0000000342552068</orcidid><orcidid>https://orcid.org/0000000235090945</orcidid><orcidid>https://orcid.org/0000000325441753</orcidid><orcidid>https://orcid.org/0000000256836240</orcidid><orcidid>https://orcid.org/0000000174717678</orcidid><orcidid>https://orcid.org/0000000292375891</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-6756 |
ispartof | Nanoscale horizons, 2024-01, Vol.9 (2), p.278-284 |
issn | 2055-6756 2055-6764 2055-6764 |
language | eng |
recordid | cdi_osti_scitechconnect_2228407 |
source | Royal Society of Chemistry |
subjects | carbon nanotubes Carrier density Carrier mobility Charge transfer CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Current carriers Doping Hole mobility NANOSCIENCE AND NANOTECHNOLOGY NMR Nuclear magnetic resonance Optoelectronic devices Organic semiconductors organics Semiconductor materials Single wall carbon nanotubes |
title | Carrier density and delocalization signatures in doped carbon nanotubes from quantitative magnetic resonance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carrier%20density%20and%20delocalization%20signatures%20in%20doped%20carbon%20nanotubes%20from%20quantitative%20magnetic%20resonance&rft.jtitle=Nanoscale%20horizons&rft.au=Hermosilla-Palacios,%20M.%20Alejandra&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2024-01-29&rft.volume=9&rft.issue=2&rft.spage=278&rft.epage=284&rft.pages=278-284&rft.issn=2055-6756&rft.eissn=2055-6764&rft_id=info:doi/10.1039/d3nh00480e&rft_dat=%3Cproquest_osti_%3E2919352033%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-98ae4ecafbad12dc387dbff453d30f0389e3a750361c9db4c4f10121a83f02ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919352033&rft_id=info:pmid/38044846&rfr_iscdi=true |