Loading…

Carrier density and delocalization signatures in doped carbon nanotubes from quantitative magnetic resonance

High-performance semiconductor materials and devices are needed to supply the growing energy and computing demand. Organic semiconductors (OSCs) are attractive options for opto-electronic devices, due to their low cost, extensive tunability, easy fabrication, and flexibility. Semiconducting single-w...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale horizons 2024-01, Vol.9 (2), p.278-284
Main Authors: Hermosilla-Palacios, M. Alejandra, Martinez, Marissa, Doud, Evan A, Hertel, Tobias, Spokoyny, Alexander M, Cambré, Sofie, Wenseleers, Wim, Kim, Yong-Hyun, Ferguson, Andrew J, Blackburn, Jeffrey L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-98ae4ecafbad12dc387dbff453d30f0389e3a750361c9db4c4f10121a83f02ba3
cites cdi_FETCH-LOGICAL-c400t-98ae4ecafbad12dc387dbff453d30f0389e3a750361c9db4c4f10121a83f02ba3
container_end_page 284
container_issue 2
container_start_page 278
container_title Nanoscale horizons
container_volume 9
creator Hermosilla-Palacios, M. Alejandra
Martinez, Marissa
Doud, Evan A
Hertel, Tobias
Spokoyny, Alexander M
Cambré, Sofie
Wenseleers, Wim
Kim, Yong-Hyun
Ferguson, Andrew J
Blackburn, Jeffrey L
description High-performance semiconductor materials and devices are needed to supply the growing energy and computing demand. Organic semiconductors (OSCs) are attractive options for opto-electronic devices, due to their low cost, extensive tunability, easy fabrication, and flexibility. Semiconducting single-walled carbon nanotubes (s-SWCNTs) have been extensively studied due to their high carrier mobility, stability and opto-electronic tunability. Although molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility. In this work we demonstrate a direct quantification of charge carrier density, and by extension carrier mobility, in chemically doped s-SWCNTs by a nuclear magnetic resonance approach. The experimental results are verified by a phase-space filling doping model, and we suggest this approach should be broadly applicable for OSCs. Our results show that hole mobility in doped s-SWCNT networks increases with increasing charge carrier density, a finding that is contrary to that expected for mobility limited by ionized impurity scattering. We discuss the implications of this important finding for additional tunability and applicability of s-SWCNT and OSC devices. Molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), however, a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility.
doi_str_mv 10.1039/d3nh00480e
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2228407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919352033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-98ae4ecafbad12dc387dbff453d30f0389e3a750361c9db4c4f10121a83f02ba3</originalsourceid><addsrcrecordid>eNpd0U1rFTEUBuAgii21G_dK0E0Rrp58zExmWa6tFYpudB0yyUmbMpPcJhmh_nqjt17BVQ68zzkQXkJeMnjPQIwfnIi3AFIBPiHHHLpu0w-9fHqYu_6InJZyBwBMsWFU4jk5EgqkVLI_JvPW5BwwU4exhPpATXRtnpM1c_hpakiRlnATTV0zFhoidWmHjlqTpxZFE1Ndp5b4nBZ6v5pYQ21rP5Au5iZiDZa2xdSgxRfkmTdzwdPH94R8v7z4tr3aXH_99Hl7fr2xEqBuRmVQojV-Mo5xZ4Ua3OS97IQT4EGoEYUZOhA9s6ObpJWeAePMKOGBT0ackDf7u6nUoIsNFe2tTTGirZpzriQMDZ3t0S6n-xVL1UsoFufZRExr0VyNg1S9UqrRt__Ru7Tm2L6g-chG0XEQoql3e2VzKiWj17scFpMfNAP9uyv9UXy5-tPVRcOvH0-u04LuQP8208CrPcjFHtJ_ZYtfFKiZxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919352033</pqid></control><display><type>article</type><title>Carrier density and delocalization signatures in doped carbon nanotubes from quantitative magnetic resonance</title><source>Royal Society of Chemistry</source><creator>Hermosilla-Palacios, M. Alejandra ; Martinez, Marissa ; Doud, Evan A ; Hertel, Tobias ; Spokoyny, Alexander M ; Cambré, Sofie ; Wenseleers, Wim ; Kim, Yong-Hyun ; Ferguson, Andrew J ; Blackburn, Jeffrey L</creator><creatorcontrib>Hermosilla-Palacios, M. Alejandra ; Martinez, Marissa ; Doud, Evan A ; Hertel, Tobias ; Spokoyny, Alexander M ; Cambré, Sofie ; Wenseleers, Wim ; Kim, Yong-Hyun ; Ferguson, Andrew J ; Blackburn, Jeffrey L ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>High-performance semiconductor materials and devices are needed to supply the growing energy and computing demand. Organic semiconductors (OSCs) are attractive options for opto-electronic devices, due to their low cost, extensive tunability, easy fabrication, and flexibility. Semiconducting single-walled carbon nanotubes (s-SWCNTs) have been extensively studied due to their high carrier mobility, stability and opto-electronic tunability. Although molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility. In this work we demonstrate a direct quantification of charge carrier density, and by extension carrier mobility, in chemically doped s-SWCNTs by a nuclear magnetic resonance approach. The experimental results are verified by a phase-space filling doping model, and we suggest this approach should be broadly applicable for OSCs. Our results show that hole mobility in doped s-SWCNT networks increases with increasing charge carrier density, a finding that is contrary to that expected for mobility limited by ionized impurity scattering. We discuss the implications of this important finding for additional tunability and applicability of s-SWCNT and OSC devices. Molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), however, a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility.</description><identifier>ISSN: 2055-6756</identifier><identifier>ISSN: 2055-6764</identifier><identifier>EISSN: 2055-6764</identifier><identifier>DOI: 10.1039/d3nh00480e</identifier><identifier>PMID: 38044846</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>carbon nanotubes ; Carrier density ; Carrier mobility ; Charge transfer ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Current carriers ; Doping ; Hole mobility ; NANOSCIENCE AND NANOTECHNOLOGY ; NMR ; Nuclear magnetic resonance ; Optoelectronic devices ; Organic semiconductors ; organics ; Semiconductor materials ; Single wall carbon nanotubes</subject><ispartof>Nanoscale horizons, 2024-01, Vol.9 (2), p.278-284</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-98ae4ecafbad12dc387dbff453d30f0389e3a750361c9db4c4f10121a83f02ba3</citedby><cites>FETCH-LOGICAL-c400t-98ae4ecafbad12dc387dbff453d30f0389e3a750361c9db4c4f10121a83f02ba3</cites><orcidid>0000-0003-4255-2068 ; 0000-0002-3509-0945 ; 0000-0001-7471-7678 ; 0000-0001-7907-4341 ; 0000-0002-9237-5891 ; 0000-0002-5683-6240 ; 0000-0003-2544-1753 ; 0000000179074341 ; 0000000342552068 ; 0000000235090945 ; 0000000325441753 ; 0000000256836240 ; 0000000174717678 ; 0000000292375891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38044846$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2228407$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hermosilla-Palacios, M. Alejandra</creatorcontrib><creatorcontrib>Martinez, Marissa</creatorcontrib><creatorcontrib>Doud, Evan A</creatorcontrib><creatorcontrib>Hertel, Tobias</creatorcontrib><creatorcontrib>Spokoyny, Alexander M</creatorcontrib><creatorcontrib>Cambré, Sofie</creatorcontrib><creatorcontrib>Wenseleers, Wim</creatorcontrib><creatorcontrib>Kim, Yong-Hyun</creatorcontrib><creatorcontrib>Ferguson, Andrew J</creatorcontrib><creatorcontrib>Blackburn, Jeffrey L</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Carrier density and delocalization signatures in doped carbon nanotubes from quantitative magnetic resonance</title><title>Nanoscale horizons</title><addtitle>Nanoscale Horiz</addtitle><description>High-performance semiconductor materials and devices are needed to supply the growing energy and computing demand. Organic semiconductors (OSCs) are attractive options for opto-electronic devices, due to their low cost, extensive tunability, easy fabrication, and flexibility. Semiconducting single-walled carbon nanotubes (s-SWCNTs) have been extensively studied due to their high carrier mobility, stability and opto-electronic tunability. Although molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility. In this work we demonstrate a direct quantification of charge carrier density, and by extension carrier mobility, in chemically doped s-SWCNTs by a nuclear magnetic resonance approach. The experimental results are verified by a phase-space filling doping model, and we suggest this approach should be broadly applicable for OSCs. Our results show that hole mobility in doped s-SWCNT networks increases with increasing charge carrier density, a finding that is contrary to that expected for mobility limited by ionized impurity scattering. We discuss the implications of this important finding for additional tunability and applicability of s-SWCNT and OSC devices. Molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), however, a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility.</description><subject>carbon nanotubes</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Charge transfer</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Current carriers</subject><subject>Doping</subject><subject>Hole mobility</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optoelectronic devices</subject><subject>Organic semiconductors</subject><subject>organics</subject><subject>Semiconductor materials</subject><subject>Single wall carbon nanotubes</subject><issn>2055-6756</issn><issn>2055-6764</issn><issn>2055-6764</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0U1rFTEUBuAgii21G_dK0E0Rrp58zExmWa6tFYpudB0yyUmbMpPcJhmh_nqjt17BVQ68zzkQXkJeMnjPQIwfnIi3AFIBPiHHHLpu0w-9fHqYu_6InJZyBwBMsWFU4jk5EgqkVLI_JvPW5BwwU4exhPpATXRtnpM1c_hpakiRlnATTV0zFhoidWmHjlqTpxZFE1Ndp5b4nBZ6v5pYQ21rP5Au5iZiDZa2xdSgxRfkmTdzwdPH94R8v7z4tr3aXH_99Hl7fr2xEqBuRmVQojV-Mo5xZ4Ua3OS97IQT4EGoEYUZOhA9s6ObpJWeAePMKOGBT0ackDf7u6nUoIsNFe2tTTGirZpzriQMDZ3t0S6n-xVL1UsoFufZRExr0VyNg1S9UqrRt__Ru7Tm2L6g-chG0XEQoql3e2VzKiWj17scFpMfNAP9uyv9UXy5-tPVRcOvH0-u04LuQP8208CrPcjFHtJ_ZYtfFKiZxg</recordid><startdate>20240129</startdate><enddate>20240129</enddate><creator>Hermosilla-Palacios, M. Alejandra</creator><creator>Martinez, Marissa</creator><creator>Doud, Evan A</creator><creator>Hertel, Tobias</creator><creator>Spokoyny, Alexander M</creator><creator>Cambré, Sofie</creator><creator>Wenseleers, Wim</creator><creator>Kim, Yong-Hyun</creator><creator>Ferguson, Andrew J</creator><creator>Blackburn, Jeffrey L</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4255-2068</orcidid><orcidid>https://orcid.org/0000-0002-3509-0945</orcidid><orcidid>https://orcid.org/0000-0001-7471-7678</orcidid><orcidid>https://orcid.org/0000-0001-7907-4341</orcidid><orcidid>https://orcid.org/0000-0002-9237-5891</orcidid><orcidid>https://orcid.org/0000-0002-5683-6240</orcidid><orcidid>https://orcid.org/0000-0003-2544-1753</orcidid><orcidid>https://orcid.org/0000000179074341</orcidid><orcidid>https://orcid.org/0000000342552068</orcidid><orcidid>https://orcid.org/0000000235090945</orcidid><orcidid>https://orcid.org/0000000325441753</orcidid><orcidid>https://orcid.org/0000000256836240</orcidid><orcidid>https://orcid.org/0000000174717678</orcidid><orcidid>https://orcid.org/0000000292375891</orcidid></search><sort><creationdate>20240129</creationdate><title>Carrier density and delocalization signatures in doped carbon nanotubes from quantitative magnetic resonance</title><author>Hermosilla-Palacios, M. Alejandra ; Martinez, Marissa ; Doud, Evan A ; Hertel, Tobias ; Spokoyny, Alexander M ; Cambré, Sofie ; Wenseleers, Wim ; Kim, Yong-Hyun ; Ferguson, Andrew J ; Blackburn, Jeffrey L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-98ae4ecafbad12dc387dbff453d30f0389e3a750361c9db4c4f10121a83f02ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>carbon nanotubes</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Charge transfer</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Current carriers</topic><topic>Doping</topic><topic>Hole mobility</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optoelectronic devices</topic><topic>Organic semiconductors</topic><topic>organics</topic><topic>Semiconductor materials</topic><topic>Single wall carbon nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hermosilla-Palacios, M. Alejandra</creatorcontrib><creatorcontrib>Martinez, Marissa</creatorcontrib><creatorcontrib>Doud, Evan A</creatorcontrib><creatorcontrib>Hertel, Tobias</creatorcontrib><creatorcontrib>Spokoyny, Alexander M</creatorcontrib><creatorcontrib>Cambré, Sofie</creatorcontrib><creatorcontrib>Wenseleers, Wim</creatorcontrib><creatorcontrib>Kim, Yong-Hyun</creatorcontrib><creatorcontrib>Ferguson, Andrew J</creatorcontrib><creatorcontrib>Blackburn, Jeffrey L</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hermosilla-Palacios, M. Alejandra</au><au>Martinez, Marissa</au><au>Doud, Evan A</au><au>Hertel, Tobias</au><au>Spokoyny, Alexander M</au><au>Cambré, Sofie</au><au>Wenseleers, Wim</au><au>Kim, Yong-Hyun</au><au>Ferguson, Andrew J</au><au>Blackburn, Jeffrey L</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carrier density and delocalization signatures in doped carbon nanotubes from quantitative magnetic resonance</atitle><jtitle>Nanoscale horizons</jtitle><addtitle>Nanoscale Horiz</addtitle><date>2024-01-29</date><risdate>2024</risdate><volume>9</volume><issue>2</issue><spage>278</spage><epage>284</epage><pages>278-284</pages><issn>2055-6756</issn><issn>2055-6764</issn><eissn>2055-6764</eissn><abstract>High-performance semiconductor materials and devices are needed to supply the growing energy and computing demand. Organic semiconductors (OSCs) are attractive options for opto-electronic devices, due to their low cost, extensive tunability, easy fabrication, and flexibility. Semiconducting single-walled carbon nanotubes (s-SWCNTs) have been extensively studied due to their high carrier mobility, stability and opto-electronic tunability. Although molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility. In this work we demonstrate a direct quantification of charge carrier density, and by extension carrier mobility, in chemically doped s-SWCNTs by a nuclear magnetic resonance approach. The experimental results are verified by a phase-space filling doping model, and we suggest this approach should be broadly applicable for OSCs. Our results show that hole mobility in doped s-SWCNT networks increases with increasing charge carrier density, a finding that is contrary to that expected for mobility limited by ionized impurity scattering. We discuss the implications of this important finding for additional tunability and applicability of s-SWCNT and OSC devices. Molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), however, a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38044846</pmid><doi>10.1039/d3nh00480e</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4255-2068</orcidid><orcidid>https://orcid.org/0000-0002-3509-0945</orcidid><orcidid>https://orcid.org/0000-0001-7471-7678</orcidid><orcidid>https://orcid.org/0000-0001-7907-4341</orcidid><orcidid>https://orcid.org/0000-0002-9237-5891</orcidid><orcidid>https://orcid.org/0000-0002-5683-6240</orcidid><orcidid>https://orcid.org/0000-0003-2544-1753</orcidid><orcidid>https://orcid.org/0000000179074341</orcidid><orcidid>https://orcid.org/0000000342552068</orcidid><orcidid>https://orcid.org/0000000235090945</orcidid><orcidid>https://orcid.org/0000000325441753</orcidid><orcidid>https://orcid.org/0000000256836240</orcidid><orcidid>https://orcid.org/0000000174717678</orcidid><orcidid>https://orcid.org/0000000292375891</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2055-6756
ispartof Nanoscale horizons, 2024-01, Vol.9 (2), p.278-284
issn 2055-6756
2055-6764
2055-6764
language eng
recordid cdi_osti_scitechconnect_2228407
source Royal Society of Chemistry
subjects carbon nanotubes
Carrier density
Carrier mobility
Charge transfer
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Current carriers
Doping
Hole mobility
NANOSCIENCE AND NANOTECHNOLOGY
NMR
Nuclear magnetic resonance
Optoelectronic devices
Organic semiconductors
organics
Semiconductor materials
Single wall carbon nanotubes
title Carrier density and delocalization signatures in doped carbon nanotubes from quantitative magnetic resonance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carrier%20density%20and%20delocalization%20signatures%20in%20doped%20carbon%20nanotubes%20from%20quantitative%20magnetic%20resonance&rft.jtitle=Nanoscale%20horizons&rft.au=Hermosilla-Palacios,%20M.%20Alejandra&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2024-01-29&rft.volume=9&rft.issue=2&rft.spage=278&rft.epage=284&rft.pages=278-284&rft.issn=2055-6756&rft.eissn=2055-6764&rft_id=info:doi/10.1039/d3nh00480e&rft_dat=%3Cproquest_osti_%3E2919352033%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-98ae4ecafbad12dc387dbff453d30f0389e3a750361c9db4c4f10121a83f02ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919352033&rft_id=info:pmid/38044846&rfr_iscdi=true