Loading…

Ectomycorrhizal fungi enhance pine growth by stimulating iron‐dependent mechanisms with trade‐offs in symbiotic performance

Summary Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant–mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2024-05, Vol.242 (4), p.1645-1660
Main Authors: Zhang, Kaile, Wang, Haihua, Tappero, Ryan, Bhatnagar, Jennifer M., Vilgalys, Rytas, Barry, Kerrie, Keymanesh, Keykhosrow, Tejomurthula, Sravanthi, Grigoriev, Igor V., Kew, William R., Eder, Elizabeth K., Nicora, Carrie D., Liao, Hui‐Ling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3809-997e05dc44d17db27e1b8640906455b5f80fedf3081b7b3fce55c91f718b68b83
cites cdi_FETCH-LOGICAL-c3809-997e05dc44d17db27e1b8640906455b5f80fedf3081b7b3fce55c91f718b68b83
container_end_page 1660
container_issue 4
container_start_page 1645
container_title The New phytologist
container_volume 242
creator Zhang, Kaile
Wang, Haihua
Tappero, Ryan
Bhatnagar, Jennifer M.
Vilgalys, Rytas
Barry, Kerrie
Keymanesh, Keykhosrow
Tejomurthula, Sravanthi
Grigoriev, Igor V.
Kew, William R.
Eder, Elizabeth K.
Nicora, Carrie D.
Liao, Hui‐Ling
description Summary Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant–mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza‐assisted Fe processing in plants, remains largely unexplored. We conducted mesocosms in Pinus plants inoculated with different ectomycorrhizal fungi (EMF) Suillus species under conditions with and without Fe coatings. Meta‐transcriptomic, biogeochemical, and X‐ray fluorescence imaging analyses were applied to investigate early‐stage mycorrhizal roots. While Fe addition promoted Pinus growth, it concurrently reduced mycorrhiza formation rate, symbiosis‐related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade‐offs between Fe‐enhanced plant growth and symbiotic performance. However, the extent of this trade‐off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe‐related functions than single‐EMF species. This subsequently triggered various Fe‐dependent physiological and biochemical processes in Pinus roots, significantly contributing to Pinus growth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content. Our study offers critical insights into how EMF communities rebalance benefits of Fe‐induced effects on symbiotic partners.
doi_str_mv 10.1111/nph.19449
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2229832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902965088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3809-997e05dc44d17db27e1b8640906455b5f80fedf3081b7b3fce55c91f718b68b83</originalsourceid><addsrcrecordid>eNp10cGO1CAYB3BiNO64evAFDNGLHroLLbRw3GxW12SjHjTxRgr9mGHTQgWaSb3oI_iMPomMs3owkQuXH3_4-CP0lJIzWta5n3dnVDIm76ENZa2sBG26-2hDSC2qlrWfT9CjlG4JIZK39UN00gjS1pI0G_TtyuQwrSbEuHNf-xHbxW8dBr_rvQE8Ow94G8M-77BeccpuWsY-O7_FLgb_8_uPAWbwA_iMJzDlkEtTwntXfI79AEUEaxN2Hqd10i5kZ_AM0YY4HW54jB7Yfkzw5G4_RZ9eX328vK5u3r95e3lxU5nyVllJ2QHhg2FsoN2g6w6oFi0jkrSMc82tIBYG2xBBdacba4BzI6ntqNCt0KI5Rc-PuaHMoJJxubzWBO_BZFXXtRRNXdDLI5pj-LJAympyycA49h7CklT5slq2nIhD3ot_6G1Yoi8jqIYwJpjgjBf16qhMDClFsGqOburjqihRh-pUqU79rq7YZ3eJi55g-Cv_dFXA-RHs3Qjr_5PUuw_Xx8hfOMOmmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044848545</pqid></control><display><type>article</type><title>Ectomycorrhizal fungi enhance pine growth by stimulating iron‐dependent mechanisms with trade‐offs in symbiotic performance</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhang, Kaile ; Wang, Haihua ; Tappero, Ryan ; Bhatnagar, Jennifer M. ; Vilgalys, Rytas ; Barry, Kerrie ; Keymanesh, Keykhosrow ; Tejomurthula, Sravanthi ; Grigoriev, Igor V. ; Kew, William R. ; Eder, Elizabeth K. ; Nicora, Carrie D. ; Liao, Hui‐Ling</creator><creatorcontrib>Zhang, Kaile ; Wang, Haihua ; Tappero, Ryan ; Bhatnagar, Jennifer M. ; Vilgalys, Rytas ; Barry, Kerrie ; Keymanesh, Keykhosrow ; Tejomurthula, Sravanthi ; Grigoriev, Igor V. ; Kew, William R. ; Eder, Elizabeth K. ; Nicora, Carrie D. ; Liao, Hui‐Ling</creatorcontrib><description>Summary Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant–mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza‐assisted Fe processing in plants, remains largely unexplored. We conducted mesocosms in Pinus plants inoculated with different ectomycorrhizal fungi (EMF) Suillus species under conditions with and without Fe coatings. Meta‐transcriptomic, biogeochemical, and X‐ray fluorescence imaging analyses were applied to investigate early‐stage mycorrhizal roots. While Fe addition promoted Pinus growth, it concurrently reduced mycorrhiza formation rate, symbiosis‐related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade‐offs between Fe‐enhanced plant growth and symbiotic performance. However, the extent of this trade‐off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe‐related functions than single‐EMF species. This subsequently triggered various Fe‐dependent physiological and biochemical processes in Pinus roots, significantly contributing to Pinus growth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content. Our study offers critical insights into how EMF communities rebalance benefits of Fe‐induced effects on symbiotic partners.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.19449</identifier><identifier>PMID: 38062903</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Carbon content ; ectomycorrhizal fungi ; Ectomycorrhizas ; Electromagnetic fields ; Fluorescence ; Fungi ; Host plants ; Inoculation ; Iron ; iron cycling ; Low frequency ; Metabolites ; meta‐transcriptomics ; Microorganisms ; Molecular modelling ; nuclear magnetic resonance spectroscopy ; Pine trees ; Pinus ; Plant growth ; Plant roots ; Plants ; Rhizosphere ; Rhizosphere microorganisms ; Roots ; Suillus ; Symbionts ; Symbiosis ; Transcriptomics ; X‐ray micro‐fluorescence</subject><ispartof>The New phytologist, 2024-05, Vol.242 (4), p.1645-1660</ispartof><rights>2023 Battelle Memorial Institute. Brookhaven Science Associates, LLC and The Authors. New Phytologist © 2023 New Phytologist Foundation This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.</rights><rights>Copyright © 2024 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3809-997e05dc44d17db27e1b8640906455b5f80fedf3081b7b3fce55c91f718b68b83</citedby><cites>FETCH-LOGICAL-c3809-997e05dc44d17db27e1b8640906455b5f80fedf3081b7b3fce55c91f718b68b83</cites><orcidid>0000-0002-7410-2064 ; 0000-0002-1486-7591 ; 0000-0001-6910-8050 ; 0000-0002-3136-8903 ; 0000-0001-6019-9443 ; 0000-0002-4281-4630 ; 0000-0002-1648-3444 ; 0000-0002-2186-3388 ; 0000-0001-6424-4133 ; 0000-0001-8299-3605 ; 0000-0002-3560-2461 ; 0000-0003-2461-9548 ; 0000-0002-8999-6785 ; 0000000164244133 ; 0000000231368903 ; 0000000182993605 ; 0000000160199443 ; 0000000221863388 ; 0000000235602461 ; 0000000324619548 ; 0000000289996785 ; 0000000214867591 ; 0000000274102064 ; 0000000242814630 ; 0000000216483444 ; 0000000169108050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38062903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2229832$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Kaile</creatorcontrib><creatorcontrib>Wang, Haihua</creatorcontrib><creatorcontrib>Tappero, Ryan</creatorcontrib><creatorcontrib>Bhatnagar, Jennifer M.</creatorcontrib><creatorcontrib>Vilgalys, Rytas</creatorcontrib><creatorcontrib>Barry, Kerrie</creatorcontrib><creatorcontrib>Keymanesh, Keykhosrow</creatorcontrib><creatorcontrib>Tejomurthula, Sravanthi</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Kew, William R.</creatorcontrib><creatorcontrib>Eder, Elizabeth K.</creatorcontrib><creatorcontrib>Nicora, Carrie D.</creatorcontrib><creatorcontrib>Liao, Hui‐Ling</creatorcontrib><title>Ectomycorrhizal fungi enhance pine growth by stimulating iron‐dependent mechanisms with trade‐offs in symbiotic performance</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant–mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza‐assisted Fe processing in plants, remains largely unexplored. We conducted mesocosms in Pinus plants inoculated with different ectomycorrhizal fungi (EMF) Suillus species under conditions with and without Fe coatings. Meta‐transcriptomic, biogeochemical, and X‐ray fluorescence imaging analyses were applied to investigate early‐stage mycorrhizal roots. While Fe addition promoted Pinus growth, it concurrently reduced mycorrhiza formation rate, symbiosis‐related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade‐offs between Fe‐enhanced plant growth and symbiotic performance. However, the extent of this trade‐off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe‐related functions than single‐EMF species. This subsequently triggered various Fe‐dependent physiological and biochemical processes in Pinus roots, significantly contributing to Pinus growth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content. Our study offers critical insights into how EMF communities rebalance benefits of Fe‐induced effects on symbiotic partners.</description><subject>Carbon</subject><subject>Carbon content</subject><subject>ectomycorrhizal fungi</subject><subject>Ectomycorrhizas</subject><subject>Electromagnetic fields</subject><subject>Fluorescence</subject><subject>Fungi</subject><subject>Host plants</subject><subject>Inoculation</subject><subject>Iron</subject><subject>iron cycling</subject><subject>Low frequency</subject><subject>Metabolites</subject><subject>meta‐transcriptomics</subject><subject>Microorganisms</subject><subject>Molecular modelling</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Pine trees</subject><subject>Pinus</subject><subject>Plant growth</subject><subject>Plant roots</subject><subject>Plants</subject><subject>Rhizosphere</subject><subject>Rhizosphere microorganisms</subject><subject>Roots</subject><subject>Suillus</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>Transcriptomics</subject><subject>X‐ray micro‐fluorescence</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10cGO1CAYB3BiNO64evAFDNGLHroLLbRw3GxW12SjHjTxRgr9mGHTQgWaSb3oI_iMPomMs3owkQuXH3_4-CP0lJIzWta5n3dnVDIm76ENZa2sBG26-2hDSC2qlrWfT9CjlG4JIZK39UN00gjS1pI0G_TtyuQwrSbEuHNf-xHbxW8dBr_rvQE8Ow94G8M-77BeccpuWsY-O7_FLgb_8_uPAWbwA_iMJzDlkEtTwntXfI79AEUEaxN2Hqd10i5kZ_AM0YY4HW54jB7Yfkzw5G4_RZ9eX328vK5u3r95e3lxU5nyVllJ2QHhg2FsoN2g6w6oFi0jkrSMc82tIBYG2xBBdacba4BzI6ntqNCt0KI5Rc-PuaHMoJJxubzWBO_BZFXXtRRNXdDLI5pj-LJAympyycA49h7CklT5slq2nIhD3ot_6G1Yoi8jqIYwJpjgjBf16qhMDClFsGqOburjqihRh-pUqU79rq7YZ3eJi55g-Cv_dFXA-RHs3Qjr_5PUuw_Xx8hfOMOmmA</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Zhang, Kaile</creator><creator>Wang, Haihua</creator><creator>Tappero, Ryan</creator><creator>Bhatnagar, Jennifer M.</creator><creator>Vilgalys, Rytas</creator><creator>Barry, Kerrie</creator><creator>Keymanesh, Keykhosrow</creator><creator>Tejomurthula, Sravanthi</creator><creator>Grigoriev, Igor V.</creator><creator>Kew, William R.</creator><creator>Eder, Elizabeth K.</creator><creator>Nicora, Carrie D.</creator><creator>Liao, Hui‐Ling</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-Blackwell</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7410-2064</orcidid><orcidid>https://orcid.org/0000-0002-1486-7591</orcidid><orcidid>https://orcid.org/0000-0001-6910-8050</orcidid><orcidid>https://orcid.org/0000-0002-3136-8903</orcidid><orcidid>https://orcid.org/0000-0001-6019-9443</orcidid><orcidid>https://orcid.org/0000-0002-4281-4630</orcidid><orcidid>https://orcid.org/0000-0002-1648-3444</orcidid><orcidid>https://orcid.org/0000-0002-2186-3388</orcidid><orcidid>https://orcid.org/0000-0001-6424-4133</orcidid><orcidid>https://orcid.org/0000-0001-8299-3605</orcidid><orcidid>https://orcid.org/0000-0002-3560-2461</orcidid><orcidid>https://orcid.org/0000-0003-2461-9548</orcidid><orcidid>https://orcid.org/0000-0002-8999-6785</orcidid><orcidid>https://orcid.org/0000000164244133</orcidid><orcidid>https://orcid.org/0000000231368903</orcidid><orcidid>https://orcid.org/0000000182993605</orcidid><orcidid>https://orcid.org/0000000160199443</orcidid><orcidid>https://orcid.org/0000000221863388</orcidid><orcidid>https://orcid.org/0000000235602461</orcidid><orcidid>https://orcid.org/0000000324619548</orcidid><orcidid>https://orcid.org/0000000289996785</orcidid><orcidid>https://orcid.org/0000000214867591</orcidid><orcidid>https://orcid.org/0000000274102064</orcidid><orcidid>https://orcid.org/0000000242814630</orcidid><orcidid>https://orcid.org/0000000216483444</orcidid><orcidid>https://orcid.org/0000000169108050</orcidid></search><sort><creationdate>202405</creationdate><title>Ectomycorrhizal fungi enhance pine growth by stimulating iron‐dependent mechanisms with trade‐offs in symbiotic performance</title><author>Zhang, Kaile ; Wang, Haihua ; Tappero, Ryan ; Bhatnagar, Jennifer M. ; Vilgalys, Rytas ; Barry, Kerrie ; Keymanesh, Keykhosrow ; Tejomurthula, Sravanthi ; Grigoriev, Igor V. ; Kew, William R. ; Eder, Elizabeth K. ; Nicora, Carrie D. ; Liao, Hui‐Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3809-997e05dc44d17db27e1b8640906455b5f80fedf3081b7b3fce55c91f718b68b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon</topic><topic>Carbon content</topic><topic>ectomycorrhizal fungi</topic><topic>Ectomycorrhizas</topic><topic>Electromagnetic fields</topic><topic>Fluorescence</topic><topic>Fungi</topic><topic>Host plants</topic><topic>Inoculation</topic><topic>Iron</topic><topic>iron cycling</topic><topic>Low frequency</topic><topic>Metabolites</topic><topic>meta‐transcriptomics</topic><topic>Microorganisms</topic><topic>Molecular modelling</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Pine trees</topic><topic>Pinus</topic><topic>Plant growth</topic><topic>Plant roots</topic><topic>Plants</topic><topic>Rhizosphere</topic><topic>Rhizosphere microorganisms</topic><topic>Roots</topic><topic>Suillus</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>Transcriptomics</topic><topic>X‐ray micro‐fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kaile</creatorcontrib><creatorcontrib>Wang, Haihua</creatorcontrib><creatorcontrib>Tappero, Ryan</creatorcontrib><creatorcontrib>Bhatnagar, Jennifer M.</creatorcontrib><creatorcontrib>Vilgalys, Rytas</creatorcontrib><creatorcontrib>Barry, Kerrie</creatorcontrib><creatorcontrib>Keymanesh, Keykhosrow</creatorcontrib><creatorcontrib>Tejomurthula, Sravanthi</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Kew, William R.</creatorcontrib><creatorcontrib>Eder, Elizabeth K.</creatorcontrib><creatorcontrib>Nicora, Carrie D.</creatorcontrib><creatorcontrib>Liao, Hui‐Ling</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kaile</au><au>Wang, Haihua</au><au>Tappero, Ryan</au><au>Bhatnagar, Jennifer M.</au><au>Vilgalys, Rytas</au><au>Barry, Kerrie</au><au>Keymanesh, Keykhosrow</au><au>Tejomurthula, Sravanthi</au><au>Grigoriev, Igor V.</au><au>Kew, William R.</au><au>Eder, Elizabeth K.</au><au>Nicora, Carrie D.</au><au>Liao, Hui‐Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ectomycorrhizal fungi enhance pine growth by stimulating iron‐dependent mechanisms with trade‐offs in symbiotic performance</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2024-05</date><risdate>2024</risdate><volume>242</volume><issue>4</issue><spage>1645</spage><epage>1660</epage><pages>1645-1660</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant–mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza‐assisted Fe processing in plants, remains largely unexplored. We conducted mesocosms in Pinus plants inoculated with different ectomycorrhizal fungi (EMF) Suillus species under conditions with and without Fe coatings. Meta‐transcriptomic, biogeochemical, and X‐ray fluorescence imaging analyses were applied to investigate early‐stage mycorrhizal roots. While Fe addition promoted Pinus growth, it concurrently reduced mycorrhiza formation rate, symbiosis‐related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade‐offs between Fe‐enhanced plant growth and symbiotic performance. However, the extent of this trade‐off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe‐related functions than single‐EMF species. This subsequently triggered various Fe‐dependent physiological and biochemical processes in Pinus roots, significantly contributing to Pinus growth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content. Our study offers critical insights into how EMF communities rebalance benefits of Fe‐induced effects on symbiotic partners.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38062903</pmid><doi>10.1111/nph.19449</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7410-2064</orcidid><orcidid>https://orcid.org/0000-0002-1486-7591</orcidid><orcidid>https://orcid.org/0000-0001-6910-8050</orcidid><orcidid>https://orcid.org/0000-0002-3136-8903</orcidid><orcidid>https://orcid.org/0000-0001-6019-9443</orcidid><orcidid>https://orcid.org/0000-0002-4281-4630</orcidid><orcidid>https://orcid.org/0000-0002-1648-3444</orcidid><orcidid>https://orcid.org/0000-0002-2186-3388</orcidid><orcidid>https://orcid.org/0000-0001-6424-4133</orcidid><orcidid>https://orcid.org/0000-0001-8299-3605</orcidid><orcidid>https://orcid.org/0000-0002-3560-2461</orcidid><orcidid>https://orcid.org/0000-0003-2461-9548</orcidid><orcidid>https://orcid.org/0000-0002-8999-6785</orcidid><orcidid>https://orcid.org/0000000164244133</orcidid><orcidid>https://orcid.org/0000000231368903</orcidid><orcidid>https://orcid.org/0000000182993605</orcidid><orcidid>https://orcid.org/0000000160199443</orcidid><orcidid>https://orcid.org/0000000221863388</orcidid><orcidid>https://orcid.org/0000000235602461</orcidid><orcidid>https://orcid.org/0000000324619548</orcidid><orcidid>https://orcid.org/0000000289996785</orcidid><orcidid>https://orcid.org/0000000214867591</orcidid><orcidid>https://orcid.org/0000000274102064</orcidid><orcidid>https://orcid.org/0000000242814630</orcidid><orcidid>https://orcid.org/0000000216483444</orcidid><orcidid>https://orcid.org/0000000169108050</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2024-05, Vol.242 (4), p.1645-1660
issn 0028-646X
1469-8137
language eng
recordid cdi_osti_scitechconnect_2229832
source Wiley-Blackwell Read & Publish Collection
subjects Carbon
Carbon content
ectomycorrhizal fungi
Ectomycorrhizas
Electromagnetic fields
Fluorescence
Fungi
Host plants
Inoculation
Iron
iron cycling
Low frequency
Metabolites
meta‐transcriptomics
Microorganisms
Molecular modelling
nuclear magnetic resonance spectroscopy
Pine trees
Pinus
Plant growth
Plant roots
Plants
Rhizosphere
Rhizosphere microorganisms
Roots
Suillus
Symbionts
Symbiosis
Transcriptomics
X‐ray micro‐fluorescence
title Ectomycorrhizal fungi enhance pine growth by stimulating iron‐dependent mechanisms with trade‐offs in symbiotic performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ectomycorrhizal%20fungi%20enhance%20pine%20growth%20by%20stimulating%20iron%E2%80%90dependent%20mechanisms%20with%20trade%E2%80%90offs%20in%20symbiotic%20performance&rft.jtitle=The%20New%20phytologist&rft.au=Zhang,%20Kaile&rft.date=2024-05&rft.volume=242&rft.issue=4&rft.spage=1645&rft.epage=1660&rft.pages=1645-1660&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.19449&rft_dat=%3Cproquest_osti_%3E2902965088%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3809-997e05dc44d17db27e1b8640906455b5f80fedf3081b7b3fce55c91f718b68b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3044848545&rft_id=info:pmid/38062903&rfr_iscdi=true