Loading…
Ectomycorrhizal fungi enhance pine growth by stimulating iron‐dependent mechanisms with trade‐offs in symbiotic performance
Summary Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant–mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza...
Saved in:
Published in: | The New phytologist 2024-05, Vol.242 (4), p.1645-1660 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3809-997e05dc44d17db27e1b8640906455b5f80fedf3081b7b3fce55c91f718b68b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c3809-997e05dc44d17db27e1b8640906455b5f80fedf3081b7b3fce55c91f718b68b83 |
container_end_page | 1660 |
container_issue | 4 |
container_start_page | 1645 |
container_title | The New phytologist |
container_volume | 242 |
creator | Zhang, Kaile Wang, Haihua Tappero, Ryan Bhatnagar, Jennifer M. Vilgalys, Rytas Barry, Kerrie Keymanesh, Keykhosrow Tejomurthula, Sravanthi Grigoriev, Igor V. Kew, William R. Eder, Elizabeth K. Nicora, Carrie D. Liao, Hui‐Ling |
description | Summary
Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant–mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza‐assisted Fe processing in plants, remains largely unexplored.
We conducted mesocosms in Pinus plants inoculated with different ectomycorrhizal fungi (EMF) Suillus species under conditions with and without Fe coatings. Meta‐transcriptomic, biogeochemical, and X‐ray fluorescence imaging analyses were applied to investigate early‐stage mycorrhizal roots.
While Fe addition promoted Pinus growth, it concurrently reduced mycorrhiza formation rate, symbiosis‐related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade‐offs between Fe‐enhanced plant growth and symbiotic performance. However, the extent of this trade‐off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe‐related functions than single‐EMF species. This subsequently triggered various Fe‐dependent physiological and biochemical processes in Pinus roots, significantly contributing to Pinus growth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content.
Our study offers critical insights into how EMF communities rebalance benefits of Fe‐induced effects on symbiotic partners. |
doi_str_mv | 10.1111/nph.19449 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2229832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902965088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3809-997e05dc44d17db27e1b8640906455b5f80fedf3081b7b3fce55c91f718b68b83</originalsourceid><addsrcrecordid>eNp10cGO1CAYB3BiNO64evAFDNGLHroLLbRw3GxW12SjHjTxRgr9mGHTQgWaSb3oI_iMPomMs3owkQuXH3_4-CP0lJIzWta5n3dnVDIm76ENZa2sBG26-2hDSC2qlrWfT9CjlG4JIZK39UN00gjS1pI0G_TtyuQwrSbEuHNf-xHbxW8dBr_rvQE8Ow94G8M-77BeccpuWsY-O7_FLgb_8_uPAWbwA_iMJzDlkEtTwntXfI79AEUEaxN2Hqd10i5kZ_AM0YY4HW54jB7Yfkzw5G4_RZ9eX328vK5u3r95e3lxU5nyVllJ2QHhg2FsoN2g6w6oFi0jkrSMc82tIBYG2xBBdacba4BzI6ntqNCt0KI5Rc-PuaHMoJJxubzWBO_BZFXXtRRNXdDLI5pj-LJAympyycA49h7CklT5slq2nIhD3ot_6G1Yoi8jqIYwJpjgjBf16qhMDClFsGqOburjqihRh-pUqU79rq7YZ3eJi55g-Cv_dFXA-RHs3Qjr_5PUuw_Xx8hfOMOmmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044848545</pqid></control><display><type>article</type><title>Ectomycorrhizal fungi enhance pine growth by stimulating iron‐dependent mechanisms with trade‐offs in symbiotic performance</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zhang, Kaile ; Wang, Haihua ; Tappero, Ryan ; Bhatnagar, Jennifer M. ; Vilgalys, Rytas ; Barry, Kerrie ; Keymanesh, Keykhosrow ; Tejomurthula, Sravanthi ; Grigoriev, Igor V. ; Kew, William R. ; Eder, Elizabeth K. ; Nicora, Carrie D. ; Liao, Hui‐Ling</creator><creatorcontrib>Zhang, Kaile ; Wang, Haihua ; Tappero, Ryan ; Bhatnagar, Jennifer M. ; Vilgalys, Rytas ; Barry, Kerrie ; Keymanesh, Keykhosrow ; Tejomurthula, Sravanthi ; Grigoriev, Igor V. ; Kew, William R. ; Eder, Elizabeth K. ; Nicora, Carrie D. ; Liao, Hui‐Ling</creatorcontrib><description>Summary
Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant–mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza‐assisted Fe processing in plants, remains largely unexplored.
We conducted mesocosms in Pinus plants inoculated with different ectomycorrhizal fungi (EMF) Suillus species under conditions with and without Fe coatings. Meta‐transcriptomic, biogeochemical, and X‐ray fluorescence imaging analyses were applied to investigate early‐stage mycorrhizal roots.
While Fe addition promoted Pinus growth, it concurrently reduced mycorrhiza formation rate, symbiosis‐related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade‐offs between Fe‐enhanced plant growth and symbiotic performance. However, the extent of this trade‐off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe‐related functions than single‐EMF species. This subsequently triggered various Fe‐dependent physiological and biochemical processes in Pinus roots, significantly contributing to Pinus growth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content.
Our study offers critical insights into how EMF communities rebalance benefits of Fe‐induced effects on symbiotic partners.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.19449</identifier><identifier>PMID: 38062903</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Carbon content ; ectomycorrhizal fungi ; Ectomycorrhizas ; Electromagnetic fields ; Fluorescence ; Fungi ; Host plants ; Inoculation ; Iron ; iron cycling ; Low frequency ; Metabolites ; meta‐transcriptomics ; Microorganisms ; Molecular modelling ; nuclear magnetic resonance spectroscopy ; Pine trees ; Pinus ; Plant growth ; Plant roots ; Plants ; Rhizosphere ; Rhizosphere microorganisms ; Roots ; Suillus ; Symbionts ; Symbiosis ; Transcriptomics ; X‐ray micro‐fluorescence</subject><ispartof>The New phytologist, 2024-05, Vol.242 (4), p.1645-1660</ispartof><rights>2023 Battelle Memorial Institute. Brookhaven Science Associates, LLC and The Authors. New Phytologist © 2023 New Phytologist Foundation This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.</rights><rights>Copyright © 2024 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3809-997e05dc44d17db27e1b8640906455b5f80fedf3081b7b3fce55c91f718b68b83</citedby><cites>FETCH-LOGICAL-c3809-997e05dc44d17db27e1b8640906455b5f80fedf3081b7b3fce55c91f718b68b83</cites><orcidid>0000-0002-7410-2064 ; 0000-0002-1486-7591 ; 0000-0001-6910-8050 ; 0000-0002-3136-8903 ; 0000-0001-6019-9443 ; 0000-0002-4281-4630 ; 0000-0002-1648-3444 ; 0000-0002-2186-3388 ; 0000-0001-6424-4133 ; 0000-0001-8299-3605 ; 0000-0002-3560-2461 ; 0000-0003-2461-9548 ; 0000-0002-8999-6785 ; 0000000164244133 ; 0000000231368903 ; 0000000182993605 ; 0000000160199443 ; 0000000221863388 ; 0000000235602461 ; 0000000324619548 ; 0000000289996785 ; 0000000214867591 ; 0000000274102064 ; 0000000242814630 ; 0000000216483444 ; 0000000169108050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38062903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2229832$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Kaile</creatorcontrib><creatorcontrib>Wang, Haihua</creatorcontrib><creatorcontrib>Tappero, Ryan</creatorcontrib><creatorcontrib>Bhatnagar, Jennifer M.</creatorcontrib><creatorcontrib>Vilgalys, Rytas</creatorcontrib><creatorcontrib>Barry, Kerrie</creatorcontrib><creatorcontrib>Keymanesh, Keykhosrow</creatorcontrib><creatorcontrib>Tejomurthula, Sravanthi</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Kew, William R.</creatorcontrib><creatorcontrib>Eder, Elizabeth K.</creatorcontrib><creatorcontrib>Nicora, Carrie D.</creatorcontrib><creatorcontrib>Liao, Hui‐Ling</creatorcontrib><title>Ectomycorrhizal fungi enhance pine growth by stimulating iron‐dependent mechanisms with trade‐offs in symbiotic performance</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary
Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant–mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza‐assisted Fe processing in plants, remains largely unexplored.
We conducted mesocosms in Pinus plants inoculated with different ectomycorrhizal fungi (EMF) Suillus species under conditions with and without Fe coatings. Meta‐transcriptomic, biogeochemical, and X‐ray fluorescence imaging analyses were applied to investigate early‐stage mycorrhizal roots.
While Fe addition promoted Pinus growth, it concurrently reduced mycorrhiza formation rate, symbiosis‐related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade‐offs between Fe‐enhanced plant growth and symbiotic performance. However, the extent of this trade‐off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe‐related functions than single‐EMF species. This subsequently triggered various Fe‐dependent physiological and biochemical processes in Pinus roots, significantly contributing to Pinus growth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content.
Our study offers critical insights into how EMF communities rebalance benefits of Fe‐induced effects on symbiotic partners.</description><subject>Carbon</subject><subject>Carbon content</subject><subject>ectomycorrhizal fungi</subject><subject>Ectomycorrhizas</subject><subject>Electromagnetic fields</subject><subject>Fluorescence</subject><subject>Fungi</subject><subject>Host plants</subject><subject>Inoculation</subject><subject>Iron</subject><subject>iron cycling</subject><subject>Low frequency</subject><subject>Metabolites</subject><subject>meta‐transcriptomics</subject><subject>Microorganisms</subject><subject>Molecular modelling</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Pine trees</subject><subject>Pinus</subject><subject>Plant growth</subject><subject>Plant roots</subject><subject>Plants</subject><subject>Rhizosphere</subject><subject>Rhizosphere microorganisms</subject><subject>Roots</subject><subject>Suillus</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>Transcriptomics</subject><subject>X‐ray micro‐fluorescence</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10cGO1CAYB3BiNO64evAFDNGLHroLLbRw3GxW12SjHjTxRgr9mGHTQgWaSb3oI_iMPomMs3owkQuXH3_4-CP0lJIzWta5n3dnVDIm76ENZa2sBG26-2hDSC2qlrWfT9CjlG4JIZK39UN00gjS1pI0G_TtyuQwrSbEuHNf-xHbxW8dBr_rvQE8Ow94G8M-77BeccpuWsY-O7_FLgb_8_uPAWbwA_iMJzDlkEtTwntXfI79AEUEaxN2Hqd10i5kZ_AM0YY4HW54jB7Yfkzw5G4_RZ9eX328vK5u3r95e3lxU5nyVllJ2QHhg2FsoN2g6w6oFi0jkrSMc82tIBYG2xBBdacba4BzI6ntqNCt0KI5Rc-PuaHMoJJxubzWBO_BZFXXtRRNXdDLI5pj-LJAympyycA49h7CklT5slq2nIhD3ot_6G1Yoi8jqIYwJpjgjBf16qhMDClFsGqOburjqihRh-pUqU79rq7YZ3eJi55g-Cv_dFXA-RHs3Qjr_5PUuw_Xx8hfOMOmmA</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Zhang, Kaile</creator><creator>Wang, Haihua</creator><creator>Tappero, Ryan</creator><creator>Bhatnagar, Jennifer M.</creator><creator>Vilgalys, Rytas</creator><creator>Barry, Kerrie</creator><creator>Keymanesh, Keykhosrow</creator><creator>Tejomurthula, Sravanthi</creator><creator>Grigoriev, Igor V.</creator><creator>Kew, William R.</creator><creator>Eder, Elizabeth K.</creator><creator>Nicora, Carrie D.</creator><creator>Liao, Hui‐Ling</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-Blackwell</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7410-2064</orcidid><orcidid>https://orcid.org/0000-0002-1486-7591</orcidid><orcidid>https://orcid.org/0000-0001-6910-8050</orcidid><orcidid>https://orcid.org/0000-0002-3136-8903</orcidid><orcidid>https://orcid.org/0000-0001-6019-9443</orcidid><orcidid>https://orcid.org/0000-0002-4281-4630</orcidid><orcidid>https://orcid.org/0000-0002-1648-3444</orcidid><orcidid>https://orcid.org/0000-0002-2186-3388</orcidid><orcidid>https://orcid.org/0000-0001-6424-4133</orcidid><orcidid>https://orcid.org/0000-0001-8299-3605</orcidid><orcidid>https://orcid.org/0000-0002-3560-2461</orcidid><orcidid>https://orcid.org/0000-0003-2461-9548</orcidid><orcidid>https://orcid.org/0000-0002-8999-6785</orcidid><orcidid>https://orcid.org/0000000164244133</orcidid><orcidid>https://orcid.org/0000000231368903</orcidid><orcidid>https://orcid.org/0000000182993605</orcidid><orcidid>https://orcid.org/0000000160199443</orcidid><orcidid>https://orcid.org/0000000221863388</orcidid><orcidid>https://orcid.org/0000000235602461</orcidid><orcidid>https://orcid.org/0000000324619548</orcidid><orcidid>https://orcid.org/0000000289996785</orcidid><orcidid>https://orcid.org/0000000214867591</orcidid><orcidid>https://orcid.org/0000000274102064</orcidid><orcidid>https://orcid.org/0000000242814630</orcidid><orcidid>https://orcid.org/0000000216483444</orcidid><orcidid>https://orcid.org/0000000169108050</orcidid></search><sort><creationdate>202405</creationdate><title>Ectomycorrhizal fungi enhance pine growth by stimulating iron‐dependent mechanisms with trade‐offs in symbiotic performance</title><author>Zhang, Kaile ; Wang, Haihua ; Tappero, Ryan ; Bhatnagar, Jennifer M. ; Vilgalys, Rytas ; Barry, Kerrie ; Keymanesh, Keykhosrow ; Tejomurthula, Sravanthi ; Grigoriev, Igor V. ; Kew, William R. ; Eder, Elizabeth K. ; Nicora, Carrie D. ; Liao, Hui‐Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3809-997e05dc44d17db27e1b8640906455b5f80fedf3081b7b3fce55c91f718b68b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon</topic><topic>Carbon content</topic><topic>ectomycorrhizal fungi</topic><topic>Ectomycorrhizas</topic><topic>Electromagnetic fields</topic><topic>Fluorescence</topic><topic>Fungi</topic><topic>Host plants</topic><topic>Inoculation</topic><topic>Iron</topic><topic>iron cycling</topic><topic>Low frequency</topic><topic>Metabolites</topic><topic>meta‐transcriptomics</topic><topic>Microorganisms</topic><topic>Molecular modelling</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Pine trees</topic><topic>Pinus</topic><topic>Plant growth</topic><topic>Plant roots</topic><topic>Plants</topic><topic>Rhizosphere</topic><topic>Rhizosphere microorganisms</topic><topic>Roots</topic><topic>Suillus</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>Transcriptomics</topic><topic>X‐ray micro‐fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kaile</creatorcontrib><creatorcontrib>Wang, Haihua</creatorcontrib><creatorcontrib>Tappero, Ryan</creatorcontrib><creatorcontrib>Bhatnagar, Jennifer M.</creatorcontrib><creatorcontrib>Vilgalys, Rytas</creatorcontrib><creatorcontrib>Barry, Kerrie</creatorcontrib><creatorcontrib>Keymanesh, Keykhosrow</creatorcontrib><creatorcontrib>Tejomurthula, Sravanthi</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Kew, William R.</creatorcontrib><creatorcontrib>Eder, Elizabeth K.</creatorcontrib><creatorcontrib>Nicora, Carrie D.</creatorcontrib><creatorcontrib>Liao, Hui‐Ling</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kaile</au><au>Wang, Haihua</au><au>Tappero, Ryan</au><au>Bhatnagar, Jennifer M.</au><au>Vilgalys, Rytas</au><au>Barry, Kerrie</au><au>Keymanesh, Keykhosrow</au><au>Tejomurthula, Sravanthi</au><au>Grigoriev, Igor V.</au><au>Kew, William R.</au><au>Eder, Elizabeth K.</au><au>Nicora, Carrie D.</au><au>Liao, Hui‐Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ectomycorrhizal fungi enhance pine growth by stimulating iron‐dependent mechanisms with trade‐offs in symbiotic performance</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2024-05</date><risdate>2024</risdate><volume>242</volume><issue>4</issue><spage>1645</spage><epage>1660</epage><pages>1645-1660</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary
Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant–mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza‐assisted Fe processing in plants, remains largely unexplored.
We conducted mesocosms in Pinus plants inoculated with different ectomycorrhizal fungi (EMF) Suillus species under conditions with and without Fe coatings. Meta‐transcriptomic, biogeochemical, and X‐ray fluorescence imaging analyses were applied to investigate early‐stage mycorrhizal roots.
While Fe addition promoted Pinus growth, it concurrently reduced mycorrhiza formation rate, symbiosis‐related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade‐offs between Fe‐enhanced plant growth and symbiotic performance. However, the extent of this trade‐off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe‐related functions than single‐EMF species. This subsequently triggered various Fe‐dependent physiological and biochemical processes in Pinus roots, significantly contributing to Pinus growth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content.
Our study offers critical insights into how EMF communities rebalance benefits of Fe‐induced effects on symbiotic partners.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38062903</pmid><doi>10.1111/nph.19449</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7410-2064</orcidid><orcidid>https://orcid.org/0000-0002-1486-7591</orcidid><orcidid>https://orcid.org/0000-0001-6910-8050</orcidid><orcidid>https://orcid.org/0000-0002-3136-8903</orcidid><orcidid>https://orcid.org/0000-0001-6019-9443</orcidid><orcidid>https://orcid.org/0000-0002-4281-4630</orcidid><orcidid>https://orcid.org/0000-0002-1648-3444</orcidid><orcidid>https://orcid.org/0000-0002-2186-3388</orcidid><orcidid>https://orcid.org/0000-0001-6424-4133</orcidid><orcidid>https://orcid.org/0000-0001-8299-3605</orcidid><orcidid>https://orcid.org/0000-0002-3560-2461</orcidid><orcidid>https://orcid.org/0000-0003-2461-9548</orcidid><orcidid>https://orcid.org/0000-0002-8999-6785</orcidid><orcidid>https://orcid.org/0000000164244133</orcidid><orcidid>https://orcid.org/0000000231368903</orcidid><orcidid>https://orcid.org/0000000182993605</orcidid><orcidid>https://orcid.org/0000000160199443</orcidid><orcidid>https://orcid.org/0000000221863388</orcidid><orcidid>https://orcid.org/0000000235602461</orcidid><orcidid>https://orcid.org/0000000324619548</orcidid><orcidid>https://orcid.org/0000000289996785</orcidid><orcidid>https://orcid.org/0000000214867591</orcidid><orcidid>https://orcid.org/0000000274102064</orcidid><orcidid>https://orcid.org/0000000242814630</orcidid><orcidid>https://orcid.org/0000000216483444</orcidid><orcidid>https://orcid.org/0000000169108050</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2024-05, Vol.242 (4), p.1645-1660 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_osti_scitechconnect_2229832 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Carbon Carbon content ectomycorrhizal fungi Ectomycorrhizas Electromagnetic fields Fluorescence Fungi Host plants Inoculation Iron iron cycling Low frequency Metabolites meta‐transcriptomics Microorganisms Molecular modelling nuclear magnetic resonance spectroscopy Pine trees Pinus Plant growth Plant roots Plants Rhizosphere Rhizosphere microorganisms Roots Suillus Symbionts Symbiosis Transcriptomics X‐ray micro‐fluorescence |
title | Ectomycorrhizal fungi enhance pine growth by stimulating iron‐dependent mechanisms with trade‐offs in symbiotic performance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ectomycorrhizal%20fungi%20enhance%20pine%20growth%20by%20stimulating%20iron%E2%80%90dependent%20mechanisms%20with%20trade%E2%80%90offs%20in%20symbiotic%20performance&rft.jtitle=The%20New%20phytologist&rft.au=Zhang,%20Kaile&rft.date=2024-05&rft.volume=242&rft.issue=4&rft.spage=1645&rft.epage=1660&rft.pages=1645-1660&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.19449&rft_dat=%3Cproquest_osti_%3E2902965088%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3809-997e05dc44d17db27e1b8640906455b5f80fedf3081b7b3fce55c91f718b68b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3044848545&rft_id=info:pmid/38062903&rfr_iscdi=true |