Loading…
Growth and characterization of horizontal GaN wires on silicon
We report the growth of in-plane GaN wires on silicon by metalorganic chemical vapor deposition. Triangular-shaped GaN microwires with semi-polar sidewalls are observed to grow on top of a GaN/Si template patterned with nano-porous SiO2. With a length-to-thickness ratio ∼200, the GaN wires are well...
Saved in:
Published in: | Applied physics letters 2014-06, Vol.104 (26) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the growth of in-plane GaN wires on silicon by metalorganic chemical vapor deposition. Triangular-shaped GaN microwires with semi-polar sidewalls are observed to grow on top of a GaN/Si template patterned with nano-porous SiO2. With a length-to-thickness ratio ∼200, the GaN wires are well aligned along the three equivalent 〈112¯0〉 directions. Micro-Raman measurements indicate negligible stress and a low defect density inside the wires. Stacking faults were found to be the only defect type in the GaN wire by cross-sectional transmission electron microscopy. The GaN wires exhibited high conductivity, and the resistivity was 20–30 mΩ cm, regardless of the wire thickness. With proper heterostructure and doping design, these highly aligned GaN wires are promising for photonic and electronic applications monolithically integrated on silicon. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4886126 |