Loading…
The effects of plasma diffusion and viscosity on turbulent instability growth
We perform two-dimensional simulations of strongly–driven compressible Rayleigh–Taylor and Kelvin–Helmholtz instabilities with and without plasma transport phenomena, modeling plasma species diffusion, and plasma viscosity in order to determine their effects on the growth of the hydrodynamic instabi...
Saved in:
Published in: | Physics of plasmas 2014-09, Vol.21 (9) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We perform two-dimensional simulations of strongly–driven compressible Rayleigh–Taylor and Kelvin–Helmholtz instabilities with and without plasma transport phenomena, modeling plasma species diffusion, and plasma viscosity in order to determine their effects on the growth of the hydrodynamic instabilities. Simulations are performed in hydrodynamically similar boxes of varying sizes, ranging from 1 μm to 1 cm in order to determine the scale at which plasma effects become important. Our results suggest that these plasma effects become noticeable when the box size is approximately 100 μm, they become significant in the 10 μm box, and dominate when the box size is 1 μm. Results suggest that plasma transport may be important at scales and conditions relevant to inertial confinement fusion, and that a plasma fluid model is capable of representing some of the kinetic transport effects. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.4895502 |