Loading…

Co-localised Raman and force spectroscopy reveal the roles of hydrogen bonds and π-π interactions in defining the mechanical properties of diphenylalanine nano- and micro-tubes

An integrated atomic force and polarized Raman microscope were used to measure the elastic properties of individual diphenylalanine (FF) nano- and micro-tubes and to obtain quantitative information regarding the inter-molecular interactions that define their mechanical properties. For individual tub...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2014-06, Vol.104 (25)
Main Authors: Sinjab, Faris, Bondakov, Georgi, Notingher, Ioan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An integrated atomic force and polarized Raman microscope were used to measure the elastic properties of individual diphenylalanine (FF) nano- and micro-tubes and to obtain quantitative information regarding the inter-molecular interactions that define their mechanical properties. For individual tubes, co-localised force spectroscopy and Raman spectroscopy measurements allowed the calculation of the Young's and shear moduli (25 ± 5 GPa and 0.28 ± 0.05 GPa, respectively) and the contribution of hydrogen bonding network to the Young's modulus (∼17.6 GPa). The π-π interactions between the phenyl rings, dominated by T-type arrangements, were estimated based on previously published X-ray data to only 0.20 GPa. These results provide experimental evidence obtained from individual FF tubes that the network of H-bonds dominates the elastic properties of the FF tubes.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4885090