Loading…
Indium tin oxide/InGaZnO bilayer stacks for enhanced mobility and optical stability in amorphous oxide thin film transistors
Optically more stable, high mobility InGaZnO thin film transistors were fabricated by implementing ultrathin In2O3-SnO2 (ITO) layers at the gate dielectric/semiconductor interface. The optimized device portrayed a high saturation mobility of ∼80 cm2/V s with off current values lower than 10−11A. The...
Saved in:
Published in: | Applied physics letters 2014-07, Vol.105 (1) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optically more stable, high mobility InGaZnO thin film transistors were fabricated by implementing ultrathin In2O3-SnO2 (ITO) layers at the gate dielectric/semiconductor interface. The optimized device portrayed a high saturation mobility of ∼80 cm2/V s with off current values lower than 10−11A. The ITO layer also acted as a hole filter layer, and hole current and threshold voltage shift values measured under negative bias illumination conditions showed that a significant amount of photo-generated charge carriers were annihilated before reaching the gate insulator. This effect was more evident at larger intensities, showing threshold voltage shift values reduced by more than ∼70% under stress conditions. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4889856 |