Loading…

First-principles calculations of the indigo encapsulation and adsorption by MgO nanotubes

We have performed ab-initio calculations to investigate the structural and electronic properties of (m,m) chiral magnesium oxide nanotubes, (m,m)MgONTs, to explore the encapsulation, inclusion, and adsorption of dyes (organic molecules) such as Indigo (IND). Studies start by determining the structur...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2014-06, Vol.115 (21)
Main Authors: Sánchez-Ochoa, F., Cocoletzi, Gregorio H., Canto, Gabriel I., Takeuchi, Noboru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c285t-9b7c85ae3b6dfa6bd03c21275e065798fe909a765b04eb3238cc906223b6e6c83
cites cdi_FETCH-LOGICAL-c285t-9b7c85ae3b6dfa6bd03c21275e065798fe909a765b04eb3238cc906223b6e6c83
container_end_page
container_issue 21
container_start_page
container_title Journal of applied physics
container_volume 115
creator Sánchez-Ochoa, F.
Cocoletzi, Gregorio H.
Canto, Gabriel I.
Takeuchi, Noboru
description We have performed ab-initio calculations to investigate the structural and electronic properties of (m,m) chiral magnesium oxide nanotubes, (m,m)MgONTs, to explore the encapsulation, inclusion, and adsorption of dyes (organic molecules) such as Indigo (IND). Studies start by determining the structural parameters of the MgO nanotubes with different diameters and the IND. The indigo encapsulation into the MgONT is studied considering four (m,m) chiralities which yield 4 different NT diameters. In the endohedral functionalization, the indigo is within the NT at a tilt angle as in previous theoretical studies of organic molecules inside carbon and boron-nitride nanotubes. Results show that the encapsulation is a strong exothermic process with the m = 6 case exhibiting the largest encapsulation energy. It is also explored the indigo adsorption on the NT surface in the parallel and perpendicular configurations. The perpendicular configuration of the IND adsorption on the (8,8)MgONT exhibits the largest energy. The indigo inclusion within the NTs meets a potential barrier when m 
doi_str_mv 10.1063/1.4881455
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22304249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126582214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-9b7c85ae3b6dfa6bd03c21275e065798fe909a765b04eb3238cc906223b6e6c83</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EEqUw8A8sMTGk-CN27BFVFJCKusDAZNmO07oKdrCdof-eQCsxnU733N2rB4BbjBYYcfqAF7UQuGbsDMwwErJqGEPnYIYQwZWQjbwEVznvEcJYUDkDnyufcqmG5IP1Q-8ytLq3Y6-LjyHD2MGyc9CH1m8jdMHqIZ-GUIcW6jbHNPy15gDfthsYdIhlNC5fg4tO99ndnOocfKye3pcv1Xrz_Lp8XFeWCFYqaRormHbU8LbT3LSIWoJJwxzirJGicxJJ3XBmUO0MJVRYKxEnZFpw3Ao6B3fHuzEXr7L1xdmdjSE4W9SEoZrU8p8aUvweXS5qH8cUpmBq-saZIATXE3V_pGyKOSfXqUnMl04HhZH69auwOvmlP7GTbE0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126582214</pqid></control><display><type>article</type><title>First-principles calculations of the indigo encapsulation and adsorption by MgO nanotubes</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Sánchez-Ochoa, F. ; Cocoletzi, Gregorio H. ; Canto, Gabriel I. ; Takeuchi, Noboru</creator><creatorcontrib>Sánchez-Ochoa, F. ; Cocoletzi, Gregorio H. ; Canto, Gabriel I. ; Takeuchi, Noboru</creatorcontrib><description>We have performed ab-initio calculations to investigate the structural and electronic properties of (m,m) chiral magnesium oxide nanotubes, (m,m)MgONTs, to explore the encapsulation, inclusion, and adsorption of dyes (organic molecules) such as Indigo (IND). Studies start by determining the structural parameters of the MgO nanotubes with different diameters and the IND. The indigo encapsulation into the MgONT is studied considering four (m,m) chiralities which yield 4 different NT diameters. In the endohedral functionalization, the indigo is within the NT at a tilt angle as in previous theoretical studies of organic molecules inside carbon and boron-nitride nanotubes. Results show that the encapsulation is a strong exothermic process with the m = 6 case exhibiting the largest encapsulation energy. It is also explored the indigo adsorption on the NT surface in the parallel and perpendicular configurations. The perpendicular configuration of the IND adsorption on the (8,8)MgONT exhibits the largest energy. The indigo inclusion within the NTs meets a potential barrier when m &lt; 6, however this barrier diminishes as the index increases. Additionally, we have determined the total density of states (DOS), partial DOS, electron charge redistributions, and the highest occupied molecular orbital–lowest unoccupied molecular orbital levels for the NTs with m = 6. Very strong binding energies and electron charge transfer from the IND to NTs is present in the atomic structures.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4881455</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ADSORPTION ; Applied physics ; BINDING ENERGY ; Boron nitride ; BORON NITRIDES ; CARBON ; Charge transfer ; CHIRALITY ; CONFIGURATION ; Configurations ; DENSITY ; Density of states ; DIFFUSION BARRIERS ; Electronic properties ; ENCAPSULATION ; First principles ; INDIGO ; Magnesium oxide ; MAGNESIUM OXIDES ; Mathematical analysis ; MOLECULAR ORBITAL METHOD ; Molecular orbitals ; MOLECULES ; NANOSCIENCE AND NANOTECHNOLOGY ; NANOTUBES ; Organic chemistry ; Potential barriers ; Superconductors (materials) ; SURFACES</subject><ispartof>Journal of applied physics, 2014-06, Vol.115 (21)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-9b7c85ae3b6dfa6bd03c21275e065798fe909a765b04eb3238cc906223b6e6c83</citedby><cites>FETCH-LOGICAL-c285t-9b7c85ae3b6dfa6bd03c21275e065798fe909a765b04eb3238cc906223b6e6c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22304249$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sánchez-Ochoa, F.</creatorcontrib><creatorcontrib>Cocoletzi, Gregorio H.</creatorcontrib><creatorcontrib>Canto, Gabriel I.</creatorcontrib><creatorcontrib>Takeuchi, Noboru</creatorcontrib><title>First-principles calculations of the indigo encapsulation and adsorption by MgO nanotubes</title><title>Journal of applied physics</title><description>We have performed ab-initio calculations to investigate the structural and electronic properties of (m,m) chiral magnesium oxide nanotubes, (m,m)MgONTs, to explore the encapsulation, inclusion, and adsorption of dyes (organic molecules) such as Indigo (IND). Studies start by determining the structural parameters of the MgO nanotubes with different diameters and the IND. The indigo encapsulation into the MgONT is studied considering four (m,m) chiralities which yield 4 different NT diameters. In the endohedral functionalization, the indigo is within the NT at a tilt angle as in previous theoretical studies of organic molecules inside carbon and boron-nitride nanotubes. Results show that the encapsulation is a strong exothermic process with the m = 6 case exhibiting the largest encapsulation energy. It is also explored the indigo adsorption on the NT surface in the parallel and perpendicular configurations. The perpendicular configuration of the IND adsorption on the (8,8)MgONT exhibits the largest energy. The indigo inclusion within the NTs meets a potential barrier when m &lt; 6, however this barrier diminishes as the index increases. Additionally, we have determined the total density of states (DOS), partial DOS, electron charge redistributions, and the highest occupied molecular orbital–lowest unoccupied molecular orbital levels for the NTs with m = 6. Very strong binding energies and electron charge transfer from the IND to NTs is present in the atomic structures.</description><subject>ADSORPTION</subject><subject>Applied physics</subject><subject>BINDING ENERGY</subject><subject>Boron nitride</subject><subject>BORON NITRIDES</subject><subject>CARBON</subject><subject>Charge transfer</subject><subject>CHIRALITY</subject><subject>CONFIGURATION</subject><subject>Configurations</subject><subject>DENSITY</subject><subject>Density of states</subject><subject>DIFFUSION BARRIERS</subject><subject>Electronic properties</subject><subject>ENCAPSULATION</subject><subject>First principles</subject><subject>INDIGO</subject><subject>Magnesium oxide</subject><subject>MAGNESIUM OXIDES</subject><subject>Mathematical analysis</subject><subject>MOLECULAR ORBITAL METHOD</subject><subject>Molecular orbitals</subject><subject>MOLECULES</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NANOTUBES</subject><subject>Organic chemistry</subject><subject>Potential barriers</subject><subject>Superconductors (materials)</subject><subject>SURFACES</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAQhi0EEqUw8A8sMTGk-CN27BFVFJCKusDAZNmO07oKdrCdof-eQCsxnU733N2rB4BbjBYYcfqAF7UQuGbsDMwwErJqGEPnYIYQwZWQjbwEVznvEcJYUDkDnyufcqmG5IP1Q-8ytLq3Y6-LjyHD2MGyc9CH1m8jdMHqIZ-GUIcW6jbHNPy15gDfthsYdIhlNC5fg4tO99ndnOocfKye3pcv1Xrz_Lp8XFeWCFYqaRormHbU8LbT3LSIWoJJwxzirJGicxJJ3XBmUO0MJVRYKxEnZFpw3Ao6B3fHuzEXr7L1xdmdjSE4W9SEoZrU8p8aUvweXS5qH8cUpmBq-saZIATXE3V_pGyKOSfXqUnMl04HhZH69auwOvmlP7GTbE0</recordid><startdate>20140607</startdate><enddate>20140607</enddate><creator>Sánchez-Ochoa, F.</creator><creator>Cocoletzi, Gregorio H.</creator><creator>Canto, Gabriel I.</creator><creator>Takeuchi, Noboru</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140607</creationdate><title>First-principles calculations of the indigo encapsulation and adsorption by MgO nanotubes</title><author>Sánchez-Ochoa, F. ; Cocoletzi, Gregorio H. ; Canto, Gabriel I. ; Takeuchi, Noboru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-9b7c85ae3b6dfa6bd03c21275e065798fe909a765b04eb3238cc906223b6e6c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ADSORPTION</topic><topic>Applied physics</topic><topic>BINDING ENERGY</topic><topic>Boron nitride</topic><topic>BORON NITRIDES</topic><topic>CARBON</topic><topic>Charge transfer</topic><topic>CHIRALITY</topic><topic>CONFIGURATION</topic><topic>Configurations</topic><topic>DENSITY</topic><topic>Density of states</topic><topic>DIFFUSION BARRIERS</topic><topic>Electronic properties</topic><topic>ENCAPSULATION</topic><topic>First principles</topic><topic>INDIGO</topic><topic>Magnesium oxide</topic><topic>MAGNESIUM OXIDES</topic><topic>Mathematical analysis</topic><topic>MOLECULAR ORBITAL METHOD</topic><topic>Molecular orbitals</topic><topic>MOLECULES</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NANOTUBES</topic><topic>Organic chemistry</topic><topic>Potential barriers</topic><topic>Superconductors (materials)</topic><topic>SURFACES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez-Ochoa, F.</creatorcontrib><creatorcontrib>Cocoletzi, Gregorio H.</creatorcontrib><creatorcontrib>Canto, Gabriel I.</creatorcontrib><creatorcontrib>Takeuchi, Noboru</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez-Ochoa, F.</au><au>Cocoletzi, Gregorio H.</au><au>Canto, Gabriel I.</au><au>Takeuchi, Noboru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principles calculations of the indigo encapsulation and adsorption by MgO nanotubes</atitle><jtitle>Journal of applied physics</jtitle><date>2014-06-07</date><risdate>2014</risdate><volume>115</volume><issue>21</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>We have performed ab-initio calculations to investigate the structural and electronic properties of (m,m) chiral magnesium oxide nanotubes, (m,m)MgONTs, to explore the encapsulation, inclusion, and adsorption of dyes (organic molecules) such as Indigo (IND). Studies start by determining the structural parameters of the MgO nanotubes with different diameters and the IND. The indigo encapsulation into the MgONT is studied considering four (m,m) chiralities which yield 4 different NT diameters. In the endohedral functionalization, the indigo is within the NT at a tilt angle as in previous theoretical studies of organic molecules inside carbon and boron-nitride nanotubes. Results show that the encapsulation is a strong exothermic process with the m = 6 case exhibiting the largest encapsulation energy. It is also explored the indigo adsorption on the NT surface in the parallel and perpendicular configurations. The perpendicular configuration of the IND adsorption on the (8,8)MgONT exhibits the largest energy. The indigo inclusion within the NTs meets a potential barrier when m &lt; 6, however this barrier diminishes as the index increases. Additionally, we have determined the total density of states (DOS), partial DOS, electron charge redistributions, and the highest occupied molecular orbital–lowest unoccupied molecular orbital levels for the NTs with m = 6. Very strong binding energies and electron charge transfer from the IND to NTs is present in the atomic structures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4881455</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2014-06, Vol.115 (21)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22304249
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects ADSORPTION
Applied physics
BINDING ENERGY
Boron nitride
BORON NITRIDES
CARBON
Charge transfer
CHIRALITY
CONFIGURATION
Configurations
DENSITY
Density of states
DIFFUSION BARRIERS
Electronic properties
ENCAPSULATION
First principles
INDIGO
Magnesium oxide
MAGNESIUM OXIDES
Mathematical analysis
MOLECULAR ORBITAL METHOD
Molecular orbitals
MOLECULES
NANOSCIENCE AND NANOTECHNOLOGY
NANOTUBES
Organic chemistry
Potential barriers
Superconductors (materials)
SURFACES
title First-principles calculations of the indigo encapsulation and adsorption by MgO nanotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principles%20calculations%20of%20the%20indigo%20encapsulation%20and%20adsorption%20by%20MgO%20nanotubes&rft.jtitle=Journal%20of%20applied%20physics&rft.au=S%C3%A1nchez-Ochoa,%20F.&rft.date=2014-06-07&rft.volume=115&rft.issue=21&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4881455&rft_dat=%3Cproquest_osti_%3E2126582214%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-9b7c85ae3b6dfa6bd03c21275e065798fe909a765b04eb3238cc906223b6e6c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126582214&rft_id=info:pmid/&rfr_iscdi=true