Loading…

New insights on P-related paramagnetic point defects in irradiated phosphate glasses: Impact of glass network type and irradiation dose

P-related paramagnetic point defects were studied in irradiated Yb-doped phosphate glasses by electron paramagnetic resonance spectroscopy (X and Q-bands). A strong impact of the glass network type on the defect nature is shown. In all glasses, r-POHC defects formation is in strong correlation with...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2014-09, Vol.116 (12)
Main Authors: Pukhkaya, V., Trompier, F., Ollier, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:P-related paramagnetic point defects were studied in irradiated Yb-doped phosphate glasses by electron paramagnetic resonance spectroscopy (X and Q-bands). A strong impact of the glass network type on the defect nature is shown. In all glasses, r-POHC defects formation is in strong correlation with Q2 tetrahedra amount supporting the structure of r-POHC. Ultra-phosphate glasses contain the larger defect type: Peroxy radicals, P1, P2, and P4 defects whose formation is linked to Q3 tetrahedra presence. In meta-phosphate and poly-phosphate glasses, peroxy radicals appear with r-POHC thermal recovery. In meta-phosphate glasses, a combination of P1 and P3 defects was evidenced for the first time, whereas in poly-phosphate glasses, only P3 defects were identified. Dose effect as well as defect recovery were analyzed.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4896876