Loading…
Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves
Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microsc...
Saved in:
Published in: | Journal of applied physics 2014-09, Vol.116 (12) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c285t-2a4a77220caccafa862b5396f4b03dbd6862a29ed6c04e74664b08b8934000153 |
---|---|
cites | cdi_FETCH-LOGICAL-c285t-2a4a77220caccafa862b5396f4b03dbd6862a29ed6c04e74664b08b8934000153 |
container_end_page | |
container_issue | 12 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 116 |
creator | Kumari, Monika Widdrat, Marc Tompa, Éva Uebe, Rene Schüler, Dirk Pósfai, Mihály Faivre, Damien Hirt, Ann M. |
description | Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems. |
doi_str_mv | 10.1063/1.4896481 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22305718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126550609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-2a4a77220caccafa862b5396f4b03dbd6862a29ed6c04e74664b08b8934000153</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKsL_0HAlYupecxkkqXUJxTc6DpkMnfalDapSVofv95Iq6sD93wc7jkIXVIyoUTwGzqppRK1pEdoRIlUVds05BiNCGG0kqpVp-gspSUhlEquRqi7cyk7P9-6tCiC12buITuLNyYWWQFO7htwGLCLwePw6XrA3vjw5yf84fICDy6mXIXYQ8QRdhCTWWG7jTtI5-hkMKsEFwcdo7eH-9fpUzV7eXye3s4qy2STK2Zq07aMEWusNYORgnUNV2KoO8L7rhflYJiCXlhSQ1sLUQzZScVrUuo0fIyu9rmhNNLJugx2YYP3YLNmjJOmLZ3_qU0M71tIWS_DNvrymGaUibKWIKpQ13vKxpBShEFvolub-KUp0b9Da6oPQ_Mft_Vv_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126550609</pqid></control><display><type>article</type><title>Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Kumari, Monika ; Widdrat, Marc ; Tompa, Éva ; Uebe, Rene ; Schüler, Dirk ; Pósfai, Mihály ; Faivre, Damien ; Hirt, Ann M.</creator><creatorcontrib>Kumari, Monika ; Widdrat, Marc ; Tompa, Éva ; Uebe, Rene ; Schüler, Dirk ; Pósfai, Mihály ; Faivre, Damien ; Hirt, Ann M.</creatorcontrib><description>Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4896481</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>AGGLOMERATION ; Applied physics ; COERCIVE FORCE ; Coercivity ; Composition effects ; EXTRACTION ; HYSTERESIS ; Hysteresis loops ; INTERACTIONS ; IRON OXIDES ; Masking ; NANOPARTICLES ; NANOSCIENCE AND NANOTECHNOLOGY ; PARTICLE SIZE ; THIN FILMS ; TRANSMISSION ELECTRON MICROSCOPY ; X-RAY DIFFRACTION</subject><ispartof>Journal of applied physics, 2014-09, Vol.116 (12)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-2a4a77220caccafa862b5396f4b03dbd6862a29ed6c04e74664b08b8934000153</citedby><cites>FETCH-LOGICAL-c285t-2a4a77220caccafa862b5396f4b03dbd6862a29ed6c04e74664b08b8934000153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22305718$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumari, Monika</creatorcontrib><creatorcontrib>Widdrat, Marc</creatorcontrib><creatorcontrib>Tompa, Éva</creatorcontrib><creatorcontrib>Uebe, Rene</creatorcontrib><creatorcontrib>Schüler, Dirk</creatorcontrib><creatorcontrib>Pósfai, Mihály</creatorcontrib><creatorcontrib>Faivre, Damien</creatorcontrib><creatorcontrib>Hirt, Ann M.</creatorcontrib><title>Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves</title><title>Journal of applied physics</title><description>Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.</description><subject>AGGLOMERATION</subject><subject>Applied physics</subject><subject>COERCIVE FORCE</subject><subject>Coercivity</subject><subject>Composition effects</subject><subject>EXTRACTION</subject><subject>HYSTERESIS</subject><subject>Hysteresis loops</subject><subject>INTERACTIONS</subject><subject>IRON OXIDES</subject><subject>Masking</subject><subject>NANOPARTICLES</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>PARTICLE SIZE</subject><subject>THIN FILMS</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><subject>X-RAY DIFFRACTION</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKsL_0HAlYupecxkkqXUJxTc6DpkMnfalDapSVofv95Iq6sD93wc7jkIXVIyoUTwGzqppRK1pEdoRIlUVds05BiNCGG0kqpVp-gspSUhlEquRqi7cyk7P9-6tCiC12buITuLNyYWWQFO7htwGLCLwePw6XrA3vjw5yf84fICDy6mXIXYQ8QRdhCTWWG7jTtI5-hkMKsEFwcdo7eH-9fpUzV7eXye3s4qy2STK2Zq07aMEWusNYORgnUNV2KoO8L7rhflYJiCXlhSQ1sLUQzZScVrUuo0fIyu9rmhNNLJugx2YYP3YLNmjJOmLZ3_qU0M71tIWS_DNvrymGaUibKWIKpQ13vKxpBShEFvolub-KUp0b9Da6oPQ_Mft_Vv_g</recordid><startdate>20140928</startdate><enddate>20140928</enddate><creator>Kumari, Monika</creator><creator>Widdrat, Marc</creator><creator>Tompa, Éva</creator><creator>Uebe, Rene</creator><creator>Schüler, Dirk</creator><creator>Pósfai, Mihály</creator><creator>Faivre, Damien</creator><creator>Hirt, Ann M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140928</creationdate><title>Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves</title><author>Kumari, Monika ; Widdrat, Marc ; Tompa, Éva ; Uebe, Rene ; Schüler, Dirk ; Pósfai, Mihály ; Faivre, Damien ; Hirt, Ann M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-2a4a77220caccafa862b5396f4b03dbd6862a29ed6c04e74664b08b8934000153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AGGLOMERATION</topic><topic>Applied physics</topic><topic>COERCIVE FORCE</topic><topic>Coercivity</topic><topic>Composition effects</topic><topic>EXTRACTION</topic><topic>HYSTERESIS</topic><topic>Hysteresis loops</topic><topic>INTERACTIONS</topic><topic>IRON OXIDES</topic><topic>Masking</topic><topic>NANOPARTICLES</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>PARTICLE SIZE</topic><topic>THIN FILMS</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumari, Monika</creatorcontrib><creatorcontrib>Widdrat, Marc</creatorcontrib><creatorcontrib>Tompa, Éva</creatorcontrib><creatorcontrib>Uebe, Rene</creatorcontrib><creatorcontrib>Schüler, Dirk</creatorcontrib><creatorcontrib>Pósfai, Mihály</creatorcontrib><creatorcontrib>Faivre, Damien</creatorcontrib><creatorcontrib>Hirt, Ann M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumari, Monika</au><au>Widdrat, Marc</au><au>Tompa, Éva</au><au>Uebe, Rene</au><au>Schüler, Dirk</au><au>Pósfai, Mihály</au><au>Faivre, Damien</au><au>Hirt, Ann M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves</atitle><jtitle>Journal of applied physics</jtitle><date>2014-09-28</date><risdate>2014</risdate><volume>116</volume><issue>12</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4896481</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2014-09, Vol.116 (12) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_22305718 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | AGGLOMERATION Applied physics COERCIVE FORCE Coercivity Composition effects EXTRACTION HYSTERESIS Hysteresis loops INTERACTIONS IRON OXIDES Masking NANOPARTICLES NANOSCIENCE AND NANOTECHNOLOGY PARTICLE SIZE THIN FILMS TRANSMISSION ELECTRON MICROSCOPY X-RAY DIFFRACTION |
title | Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A42%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinguishing%20magnetic%20particle%20size%20of%20iron%20oxide%20nanoparticles%20with%20first-order%20reversal%20curves&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kumari,%20Monika&rft.date=2014-09-28&rft.volume=116&rft.issue=12&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4896481&rft_dat=%3Cproquest_osti_%3E2126550609%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-2a4a77220caccafa862b5396f4b03dbd6862a29ed6c04e74664b08b8934000153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126550609&rft_id=info:pmid/&rfr_iscdi=true |