Loading…

Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves

Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microsc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2014-09, Vol.116 (12)
Main Authors: Kumari, Monika, Widdrat, Marc, Tompa, Éva, Uebe, Rene, Schüler, Dirk, Pósfai, Mihály, Faivre, Damien, Hirt, Ann M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c285t-2a4a77220caccafa862b5396f4b03dbd6862a29ed6c04e74664b08b8934000153
cites cdi_FETCH-LOGICAL-c285t-2a4a77220caccafa862b5396f4b03dbd6862a29ed6c04e74664b08b8934000153
container_end_page
container_issue 12
container_start_page
container_title Journal of applied physics
container_volume 116
creator Kumari, Monika
Widdrat, Marc
Tompa, Éva
Uebe, Rene
Schüler, Dirk
Pósfai, Mihály
Faivre, Damien
Hirt, Ann M.
description Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.
doi_str_mv 10.1063/1.4896481
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22305718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126550609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-2a4a77220caccafa862b5396f4b03dbd6862a29ed6c04e74664b08b8934000153</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKsL_0HAlYupecxkkqXUJxTc6DpkMnfalDapSVofv95Iq6sD93wc7jkIXVIyoUTwGzqppRK1pEdoRIlUVds05BiNCGG0kqpVp-gspSUhlEquRqi7cyk7P9-6tCiC12buITuLNyYWWQFO7htwGLCLwePw6XrA3vjw5yf84fICDy6mXIXYQ8QRdhCTWWG7jTtI5-hkMKsEFwcdo7eH-9fpUzV7eXye3s4qy2STK2Zq07aMEWusNYORgnUNV2KoO8L7rhflYJiCXlhSQ1sLUQzZScVrUuo0fIyu9rmhNNLJugx2YYP3YLNmjJOmLZ3_qU0M71tIWS_DNvrymGaUibKWIKpQ13vKxpBShEFvolub-KUp0b9Da6oPQ_Mft_Vv_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126550609</pqid></control><display><type>article</type><title>Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Kumari, Monika ; Widdrat, Marc ; Tompa, Éva ; Uebe, Rene ; Schüler, Dirk ; Pósfai, Mihály ; Faivre, Damien ; Hirt, Ann M.</creator><creatorcontrib>Kumari, Monika ; Widdrat, Marc ; Tompa, Éva ; Uebe, Rene ; Schüler, Dirk ; Pósfai, Mihály ; Faivre, Damien ; Hirt, Ann M.</creatorcontrib><description>Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4896481</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>AGGLOMERATION ; Applied physics ; COERCIVE FORCE ; Coercivity ; Composition effects ; EXTRACTION ; HYSTERESIS ; Hysteresis loops ; INTERACTIONS ; IRON OXIDES ; Masking ; NANOPARTICLES ; NANOSCIENCE AND NANOTECHNOLOGY ; PARTICLE SIZE ; THIN FILMS ; TRANSMISSION ELECTRON MICROSCOPY ; X-RAY DIFFRACTION</subject><ispartof>Journal of applied physics, 2014-09, Vol.116 (12)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-2a4a77220caccafa862b5396f4b03dbd6862a29ed6c04e74664b08b8934000153</citedby><cites>FETCH-LOGICAL-c285t-2a4a77220caccafa862b5396f4b03dbd6862a29ed6c04e74664b08b8934000153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22305718$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumari, Monika</creatorcontrib><creatorcontrib>Widdrat, Marc</creatorcontrib><creatorcontrib>Tompa, Éva</creatorcontrib><creatorcontrib>Uebe, Rene</creatorcontrib><creatorcontrib>Schüler, Dirk</creatorcontrib><creatorcontrib>Pósfai, Mihály</creatorcontrib><creatorcontrib>Faivre, Damien</creatorcontrib><creatorcontrib>Hirt, Ann M.</creatorcontrib><title>Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves</title><title>Journal of applied physics</title><description>Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.</description><subject>AGGLOMERATION</subject><subject>Applied physics</subject><subject>COERCIVE FORCE</subject><subject>Coercivity</subject><subject>Composition effects</subject><subject>EXTRACTION</subject><subject>HYSTERESIS</subject><subject>Hysteresis loops</subject><subject>INTERACTIONS</subject><subject>IRON OXIDES</subject><subject>Masking</subject><subject>NANOPARTICLES</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>PARTICLE SIZE</subject><subject>THIN FILMS</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><subject>X-RAY DIFFRACTION</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKsL_0HAlYupecxkkqXUJxTc6DpkMnfalDapSVofv95Iq6sD93wc7jkIXVIyoUTwGzqppRK1pEdoRIlUVds05BiNCGG0kqpVp-gspSUhlEquRqi7cyk7P9-6tCiC12buITuLNyYWWQFO7htwGLCLwePw6XrA3vjw5yf84fICDy6mXIXYQ8QRdhCTWWG7jTtI5-hkMKsEFwcdo7eH-9fpUzV7eXye3s4qy2STK2Zq07aMEWusNYORgnUNV2KoO8L7rhflYJiCXlhSQ1sLUQzZScVrUuo0fIyu9rmhNNLJugx2YYP3YLNmjJOmLZ3_qU0M71tIWS_DNvrymGaUibKWIKpQ13vKxpBShEFvolub-KUp0b9Da6oPQ_Mft_Vv_g</recordid><startdate>20140928</startdate><enddate>20140928</enddate><creator>Kumari, Monika</creator><creator>Widdrat, Marc</creator><creator>Tompa, Éva</creator><creator>Uebe, Rene</creator><creator>Schüler, Dirk</creator><creator>Pósfai, Mihály</creator><creator>Faivre, Damien</creator><creator>Hirt, Ann M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140928</creationdate><title>Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves</title><author>Kumari, Monika ; Widdrat, Marc ; Tompa, Éva ; Uebe, Rene ; Schüler, Dirk ; Pósfai, Mihály ; Faivre, Damien ; Hirt, Ann M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-2a4a77220caccafa862b5396f4b03dbd6862a29ed6c04e74664b08b8934000153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AGGLOMERATION</topic><topic>Applied physics</topic><topic>COERCIVE FORCE</topic><topic>Coercivity</topic><topic>Composition effects</topic><topic>EXTRACTION</topic><topic>HYSTERESIS</topic><topic>Hysteresis loops</topic><topic>INTERACTIONS</topic><topic>IRON OXIDES</topic><topic>Masking</topic><topic>NANOPARTICLES</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>PARTICLE SIZE</topic><topic>THIN FILMS</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumari, Monika</creatorcontrib><creatorcontrib>Widdrat, Marc</creatorcontrib><creatorcontrib>Tompa, Éva</creatorcontrib><creatorcontrib>Uebe, Rene</creatorcontrib><creatorcontrib>Schüler, Dirk</creatorcontrib><creatorcontrib>Pósfai, Mihály</creatorcontrib><creatorcontrib>Faivre, Damien</creatorcontrib><creatorcontrib>Hirt, Ann M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumari, Monika</au><au>Widdrat, Marc</au><au>Tompa, Éva</au><au>Uebe, Rene</au><au>Schüler, Dirk</au><au>Pósfai, Mihály</au><au>Faivre, Damien</au><au>Hirt, Ann M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves</atitle><jtitle>Journal of applied physics</jtitle><date>2014-09-28</date><risdate>2014</risdate><volume>116</volume><issue>12</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4896481</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2014-09, Vol.116 (12)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22305718
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects AGGLOMERATION
Applied physics
COERCIVE FORCE
Coercivity
Composition effects
EXTRACTION
HYSTERESIS
Hysteresis loops
INTERACTIONS
IRON OXIDES
Masking
NANOPARTICLES
NANOSCIENCE AND NANOTECHNOLOGY
PARTICLE SIZE
THIN FILMS
TRANSMISSION ELECTRON MICROSCOPY
X-RAY DIFFRACTION
title Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A42%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinguishing%20magnetic%20particle%20size%20of%20iron%20oxide%20nanoparticles%20with%20first-order%20reversal%20curves&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kumari,%20Monika&rft.date=2014-09-28&rft.volume=116&rft.issue=12&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4896481&rft_dat=%3Cproquest_osti_%3E2126550609%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-2a4a77220caccafa862b5396f4b03dbd6862a29ed6c04e74664b08b8934000153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126550609&rft_id=info:pmid/&rfr_iscdi=true