Loading…
Graphene folding on flat substrates
We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mecha...
Saved in:
Published in: | Journal of applied physics 2014-10, Vol.116 (16) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-a4296388cf31c0b81311778c04e5cc18d49e665bd706c15806c7f01939431d2d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-a4296388cf31c0b81311778c04e5cc18d49e665bd706c15806c7f01939431d2d3 |
container_end_page | |
container_issue | 16 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 116 |
creator | Chen, Xiaoming Zhang, Liuyang Zhao, Yadong Wang, Xianqiao Ke, Changhong |
description | We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57 eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications. |
doi_str_mv | 10.1063/1.4898760 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22308179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126531418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-a4296388cf31c0b81311778c04e5cc18d49e665bd706c15806c7f01939431d2d3</originalsourceid><addsrcrecordid>eNpFkD1PwzAYhC0EEiEw8A8idWJIeV87_hpRBQWpEgvMVuI4NFWIg-0M_HuCWqnL3fLodHeE3COsEQR7xHWltJICLkiGoHQpOYdLkgFQLJWW-prcxHgAQFRMZ2S1DfW0d6MrOj-0_fhV-LHohjoVcW5iCnVy8ZZcdfUQ3d3Jc_L58vyxeS1379u3zdOutIxjKuuKasGUsh1DC41ChiilslA5bi2qttJOCN60EoRFrhaVHaBmumLY0pblZHXM9TH1Jto-Obu3fhydTYZSBgqlPlNT8D-zi8kc_BzGpZihSAVnWC3TcvJwpGzwMQbXmSn033X4NQjm_ymD5vQU-wO201a1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126531418</pqid></control><display><type>article</type><title>Graphene folding on flat substrates</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Chen, Xiaoming ; Zhang, Liuyang ; Zhao, Yadong ; Wang, Xianqiao ; Ke, Changhong</creator><creatorcontrib>Chen, Xiaoming ; Zhang, Liuyang ; Zhao, Yadong ; Wang, Xianqiao ; Ke, Changhong</creatorcontrib><description>We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57 eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4898760</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; ATOMIC FORCE MICROSCOPY ; Computer simulation ; Continuum mechanics ; Deformation ; EV RANGE ; FLEXIBILITY ; Folding ; GRAPHENE ; Graphical user interface ; Interlayers ; Mechanical properties ; Molecular dynamics ; MOLECULAR DYNAMICS METHOD ; NANOSCIENCE AND NANOTECHNOLOGY ; NANOSTRUCTURES ; SIMULATION ; Stiffness ; SUBSTRATES ; VAN DER WAALS FORCES</subject><ispartof>Journal of applied physics, 2014-10, Vol.116 (16)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-a4296388cf31c0b81311778c04e5cc18d49e665bd706c15806c7f01939431d2d3</citedby><cites>FETCH-LOGICAL-c351t-a4296388cf31c0b81311778c04e5cc18d49e665bd706c15806c7f01939431d2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27898,27899</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22308179$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xiaoming</creatorcontrib><creatorcontrib>Zhang, Liuyang</creatorcontrib><creatorcontrib>Zhao, Yadong</creatorcontrib><creatorcontrib>Wang, Xianqiao</creatorcontrib><creatorcontrib>Ke, Changhong</creatorcontrib><title>Graphene folding on flat substrates</title><title>Journal of applied physics</title><description>We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57 eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.</description><subject>Applied physics</subject><subject>ATOMIC FORCE MICROSCOPY</subject><subject>Computer simulation</subject><subject>Continuum mechanics</subject><subject>Deformation</subject><subject>EV RANGE</subject><subject>FLEXIBILITY</subject><subject>Folding</subject><subject>GRAPHENE</subject><subject>Graphical user interface</subject><subject>Interlayers</subject><subject>Mechanical properties</subject><subject>Molecular dynamics</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NANOSTRUCTURES</subject><subject>SIMULATION</subject><subject>Stiffness</subject><subject>SUBSTRATES</subject><subject>VAN DER WAALS FORCES</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAYhC0EEiEw8A8idWJIeV87_hpRBQWpEgvMVuI4NFWIg-0M_HuCWqnL3fLodHeE3COsEQR7xHWltJICLkiGoHQpOYdLkgFQLJWW-prcxHgAQFRMZ2S1DfW0d6MrOj-0_fhV-LHohjoVcW5iCnVy8ZZcdfUQ3d3Jc_L58vyxeS1379u3zdOutIxjKuuKasGUsh1DC41ChiilslA5bi2qttJOCN60EoRFrhaVHaBmumLY0pblZHXM9TH1Jto-Obu3fhydTYZSBgqlPlNT8D-zi8kc_BzGpZihSAVnWC3TcvJwpGzwMQbXmSn033X4NQjm_ymD5vQU-wO201a1</recordid><startdate>20141028</startdate><enddate>20141028</enddate><creator>Chen, Xiaoming</creator><creator>Zhang, Liuyang</creator><creator>Zhao, Yadong</creator><creator>Wang, Xianqiao</creator><creator>Ke, Changhong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20141028</creationdate><title>Graphene folding on flat substrates</title><author>Chen, Xiaoming ; Zhang, Liuyang ; Zhao, Yadong ; Wang, Xianqiao ; Ke, Changhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-a4296388cf31c0b81311778c04e5cc18d49e665bd706c15806c7f01939431d2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>ATOMIC FORCE MICROSCOPY</topic><topic>Computer simulation</topic><topic>Continuum mechanics</topic><topic>Deformation</topic><topic>EV RANGE</topic><topic>FLEXIBILITY</topic><topic>Folding</topic><topic>GRAPHENE</topic><topic>Graphical user interface</topic><topic>Interlayers</topic><topic>Mechanical properties</topic><topic>Molecular dynamics</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NANOSTRUCTURES</topic><topic>SIMULATION</topic><topic>Stiffness</topic><topic>SUBSTRATES</topic><topic>VAN DER WAALS FORCES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaoming</creatorcontrib><creatorcontrib>Zhang, Liuyang</creatorcontrib><creatorcontrib>Zhao, Yadong</creatorcontrib><creatorcontrib>Wang, Xianqiao</creatorcontrib><creatorcontrib>Ke, Changhong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiaoming</au><au>Zhang, Liuyang</au><au>Zhao, Yadong</au><au>Wang, Xianqiao</au><au>Ke, Changhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene folding on flat substrates</atitle><jtitle>Journal of applied physics</jtitle><date>2014-10-28</date><risdate>2014</risdate><volume>116</volume><issue>16</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57 eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4898760</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2014-10, Vol.116 (16) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_22308179 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics ATOMIC FORCE MICROSCOPY Computer simulation Continuum mechanics Deformation EV RANGE FLEXIBILITY Folding GRAPHENE Graphical user interface Interlayers Mechanical properties Molecular dynamics MOLECULAR DYNAMICS METHOD NANOSCIENCE AND NANOTECHNOLOGY NANOSTRUCTURES SIMULATION Stiffness SUBSTRATES VAN DER WAALS FORCES |
title | Graphene folding on flat substrates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T16%3A31%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20folding%20on%20flat%20substrates&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Chen,%20Xiaoming&rft.date=2014-10-28&rft.volume=116&rft.issue=16&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4898760&rft_dat=%3Cproquest_osti_%3E2126531418%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-a4296388cf31c0b81311778c04e5cc18d49e665bd706c15806c7f01939431d2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126531418&rft_id=info:pmid/&rfr_iscdi=true |