Loading…

Graphene folding on flat substrates

We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mecha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2014-10, Vol.116 (16)
Main Authors: Chen, Xiaoming, Zhang, Liuyang, Zhao, Yadong, Wang, Xianqiao, Ke, Changhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-a4296388cf31c0b81311778c04e5cc18d49e665bd706c15806c7f01939431d2d3
cites cdi_FETCH-LOGICAL-c351t-a4296388cf31c0b81311778c04e5cc18d49e665bd706c15806c7f01939431d2d3
container_end_page
container_issue 16
container_start_page
container_title Journal of applied physics
container_volume 116
creator Chen, Xiaoming
Zhang, Liuyang
Zhao, Yadong
Wang, Xianqiao
Ke, Changhong
description We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57 eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.
doi_str_mv 10.1063/1.4898760
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22308179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126531418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-a4296388cf31c0b81311778c04e5cc18d49e665bd706c15806c7f01939431d2d3</originalsourceid><addsrcrecordid>eNpFkD1PwzAYhC0EEiEw8A8idWJIeV87_hpRBQWpEgvMVuI4NFWIg-0M_HuCWqnL3fLodHeE3COsEQR7xHWltJICLkiGoHQpOYdLkgFQLJWW-prcxHgAQFRMZ2S1DfW0d6MrOj-0_fhV-LHohjoVcW5iCnVy8ZZcdfUQ3d3Jc_L58vyxeS1379u3zdOutIxjKuuKasGUsh1DC41ChiilslA5bi2qttJOCN60EoRFrhaVHaBmumLY0pblZHXM9TH1Jto-Obu3fhydTYZSBgqlPlNT8D-zi8kc_BzGpZihSAVnWC3TcvJwpGzwMQbXmSn033X4NQjm_ymD5vQU-wO201a1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126531418</pqid></control><display><type>article</type><title>Graphene folding on flat substrates</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Chen, Xiaoming ; Zhang, Liuyang ; Zhao, Yadong ; Wang, Xianqiao ; Ke, Changhong</creator><creatorcontrib>Chen, Xiaoming ; Zhang, Liuyang ; Zhao, Yadong ; Wang, Xianqiao ; Ke, Changhong</creatorcontrib><description>We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57 eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4898760</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; ATOMIC FORCE MICROSCOPY ; Computer simulation ; Continuum mechanics ; Deformation ; EV RANGE ; FLEXIBILITY ; Folding ; GRAPHENE ; Graphical user interface ; Interlayers ; Mechanical properties ; Molecular dynamics ; MOLECULAR DYNAMICS METHOD ; NANOSCIENCE AND NANOTECHNOLOGY ; NANOSTRUCTURES ; SIMULATION ; Stiffness ; SUBSTRATES ; VAN DER WAALS FORCES</subject><ispartof>Journal of applied physics, 2014-10, Vol.116 (16)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-a4296388cf31c0b81311778c04e5cc18d49e665bd706c15806c7f01939431d2d3</citedby><cites>FETCH-LOGICAL-c351t-a4296388cf31c0b81311778c04e5cc18d49e665bd706c15806c7f01939431d2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27898,27899</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22308179$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xiaoming</creatorcontrib><creatorcontrib>Zhang, Liuyang</creatorcontrib><creatorcontrib>Zhao, Yadong</creatorcontrib><creatorcontrib>Wang, Xianqiao</creatorcontrib><creatorcontrib>Ke, Changhong</creatorcontrib><title>Graphene folding on flat substrates</title><title>Journal of applied physics</title><description>We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57 eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.</description><subject>Applied physics</subject><subject>ATOMIC FORCE MICROSCOPY</subject><subject>Computer simulation</subject><subject>Continuum mechanics</subject><subject>Deformation</subject><subject>EV RANGE</subject><subject>FLEXIBILITY</subject><subject>Folding</subject><subject>GRAPHENE</subject><subject>Graphical user interface</subject><subject>Interlayers</subject><subject>Mechanical properties</subject><subject>Molecular dynamics</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NANOSTRUCTURES</subject><subject>SIMULATION</subject><subject>Stiffness</subject><subject>SUBSTRATES</subject><subject>VAN DER WAALS FORCES</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAYhC0EEiEw8A8idWJIeV87_hpRBQWpEgvMVuI4NFWIg-0M_HuCWqnL3fLodHeE3COsEQR7xHWltJICLkiGoHQpOYdLkgFQLJWW-prcxHgAQFRMZ2S1DfW0d6MrOj-0_fhV-LHohjoVcW5iCnVy8ZZcdfUQ3d3Jc_L58vyxeS1379u3zdOutIxjKuuKasGUsh1DC41ChiilslA5bi2qttJOCN60EoRFrhaVHaBmumLY0pblZHXM9TH1Jto-Obu3fhydTYZSBgqlPlNT8D-zi8kc_BzGpZihSAVnWC3TcvJwpGzwMQbXmSn033X4NQjm_ymD5vQU-wO201a1</recordid><startdate>20141028</startdate><enddate>20141028</enddate><creator>Chen, Xiaoming</creator><creator>Zhang, Liuyang</creator><creator>Zhao, Yadong</creator><creator>Wang, Xianqiao</creator><creator>Ke, Changhong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20141028</creationdate><title>Graphene folding on flat substrates</title><author>Chen, Xiaoming ; Zhang, Liuyang ; Zhao, Yadong ; Wang, Xianqiao ; Ke, Changhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-a4296388cf31c0b81311778c04e5cc18d49e665bd706c15806c7f01939431d2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>ATOMIC FORCE MICROSCOPY</topic><topic>Computer simulation</topic><topic>Continuum mechanics</topic><topic>Deformation</topic><topic>EV RANGE</topic><topic>FLEXIBILITY</topic><topic>Folding</topic><topic>GRAPHENE</topic><topic>Graphical user interface</topic><topic>Interlayers</topic><topic>Mechanical properties</topic><topic>Molecular dynamics</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NANOSTRUCTURES</topic><topic>SIMULATION</topic><topic>Stiffness</topic><topic>SUBSTRATES</topic><topic>VAN DER WAALS FORCES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaoming</creatorcontrib><creatorcontrib>Zhang, Liuyang</creatorcontrib><creatorcontrib>Zhao, Yadong</creatorcontrib><creatorcontrib>Wang, Xianqiao</creatorcontrib><creatorcontrib>Ke, Changhong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiaoming</au><au>Zhang, Liuyang</au><au>Zhao, Yadong</au><au>Wang, Xianqiao</au><au>Ke, Changhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene folding on flat substrates</atitle><jtitle>Journal of applied physics</jtitle><date>2014-10-28</date><risdate>2014</risdate><volume>116</volume><issue>16</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57 eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4898760</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2014-10, Vol.116 (16)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22308179
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
ATOMIC FORCE MICROSCOPY
Computer simulation
Continuum mechanics
Deformation
EV RANGE
FLEXIBILITY
Folding
GRAPHENE
Graphical user interface
Interlayers
Mechanical properties
Molecular dynamics
MOLECULAR DYNAMICS METHOD
NANOSCIENCE AND NANOTECHNOLOGY
NANOSTRUCTURES
SIMULATION
Stiffness
SUBSTRATES
VAN DER WAALS FORCES
title Graphene folding on flat substrates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T16%3A31%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20folding%20on%20flat%20substrates&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Chen,%20Xiaoming&rft.date=2014-10-28&rft.volume=116&rft.issue=16&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4898760&rft_dat=%3Cproquest_osti_%3E2126531418%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-a4296388cf31c0b81311778c04e5cc18d49e665bd706c15806c7f01939431d2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126531418&rft_id=info:pmid/&rfr_iscdi=true