Loading…
A relationship between statistical time to breakdown distributions and pre-breakdown negative differential resistance at nanometric scale
Using an ultra-high vacuum Conductive atomic force microscopy (C-AFM) current voltage, pre-breakdown negative differential resistance (NDR) characteristics are measured together with the time dependent dielectric breakdown (TDDB) distributions of Si/SiON (1.4 and 2.6 nm thick). Those experimental ch...
Saved in:
Published in: | Journal of applied physics 2014-07, Vol.116 (2) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c285t-d28ad197edbfaa3ae509af910a1b91187defbfe83b7adf244df9a5608d34e6a93 |
---|---|
cites | cdi_FETCH-LOGICAL-c285t-d28ad197edbfaa3ae509af910a1b91187defbfe83b7adf244df9a5608d34e6a93 |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 116 |
creator | Foissac, R. Blonkowski, S. Kogelschatz, M. Delcroix, P. |
description | Using an ultra-high vacuum Conductive atomic force microscopy (C-AFM) current voltage, pre-breakdown negative differential resistance (NDR) characteristics are measured together with the time dependent dielectric breakdown (TDDB) distributions of Si/SiON (1.4 and 2.6 nm thick). Those experimental characteristics are systematically compared. The NDR effect is modelled by a conductive filament growth. It is showed that the Weibull TDDB statistic distribution scale factor is proportional to the growth rate of an individual filament and then has the same dependence on the electric field. The proportionality factor is a power law of the ratio between the surfaces of the CAFM tip and the filament's top. Moreover, it was found that, for the high fields used in those experiments, the TDDB acceleration factor as the growth rate characteristic is proportional to the Zener tunnelling probability. Those observations are discussed in the framework of possible breakdown or forming mechanism. |
doi_str_mv | 10.1063/1.4888183 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22309005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126574317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-d28ad197edbfaa3ae509af910a1b91187defbfe83b7adf244df9a5608d34e6a93</originalsourceid><addsrcrecordid>eNpFkU1LAzEQhoMoWD8O_oOAJw9bk81uNzlK8QsKXvQcZpOJ3domNUkt_gT_tdEWehqYed535mUIueJszNlE3PJxI6XkUhyREWdSVV3bsmMyYqzmlVSdOiVnKS0Y44VRI_JzRyMuIQ_Bp_mwpj3mLaKnKZdeyoOBJc3DCmkOtI8IHzZsPbVlFId-8y-j4C1dR6wOc4_vRf6FBXQOI_o8FJ-IqejAG6SQqQcfVlhsDE1lC16QEwfLhJf7ek7eHu5fp0_V7OXxeXo3q0wt21zZWoLlqkPbOwAB2DIFTnEGvFclVGfR9Q6l6Duwrm4a6xS0EyataHACSpyT651vKPF0MkNGMzfBezRZ17VgirH2QK1j-NxgynoRNtGXw3TN60nbNYJ3hbrZUSaGlCI6vY7DCuK35kz__UNzvf-H-AVKJICt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126574317</pqid></control><display><type>article</type><title>A relationship between statistical time to breakdown distributions and pre-breakdown negative differential resistance at nanometric scale</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Foissac, R. ; Blonkowski, S. ; Kogelschatz, M. ; Delcroix, P.</creator><creatorcontrib>Foissac, R. ; Blonkowski, S. ; Kogelschatz, M. ; Delcroix, P.</creatorcontrib><description>Using an ultra-high vacuum Conductive atomic force microscopy (C-AFM) current voltage, pre-breakdown negative differential resistance (NDR) characteristics are measured together with the time dependent dielectric breakdown (TDDB) distributions of Si/SiON (1.4 and 2.6 nm thick). Those experimental characteristics are systematically compared. The NDR effect is modelled by a conductive filament growth. It is showed that the Weibull TDDB statistic distribution scale factor is proportional to the growth rate of an individual filament and then has the same dependence on the electric field. The proportionality factor is a power law of the ratio between the surfaces of the CAFM tip and the filament's top. Moreover, it was found that, for the high fields used in those experiments, the TDDB acceleration factor as the growth rate characteristic is proportional to the Zener tunnelling probability. Those observations are discussed in the framework of possible breakdown or forming mechanism.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4888183</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ACCELERATION ; Applied physics ; ATOMIC FORCE MICROSCOPY ; BREAKDOWN ; CRYSTAL GROWTH ; CURRENTS ; Dielectric breakdown ; DIELECTRIC MATERIALS ; Differential thermal analysis ; DISTRIBUTION ; ELECTRIC CONDUCTIVITY ; ELECTRIC FIELDS ; ELECTRIC POTENTIAL ; FILAMENTS ; High vacuum ; NANOSCIENCE AND NANOTECHNOLOGY ; NANOSTRUCTURES ; NITROGEN COMPOUNDS ; OXYGEN COMPOUNDS ; Prebreakdown ; PROBABILITY ; SILICON ; SILICON COMPOUNDS ; Statistical analysis ; SURFACES ; TIME DEPENDENCE ; TUNNEL EFFECT</subject><ispartof>Journal of applied physics, 2014-07, Vol.116 (2)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-d28ad197edbfaa3ae509af910a1b91187defbfe83b7adf244df9a5608d34e6a93</citedby><cites>FETCH-LOGICAL-c285t-d28ad197edbfaa3ae509af910a1b91187defbfe83b7adf244df9a5608d34e6a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22309005$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Foissac, R.</creatorcontrib><creatorcontrib>Blonkowski, S.</creatorcontrib><creatorcontrib>Kogelschatz, M.</creatorcontrib><creatorcontrib>Delcroix, P.</creatorcontrib><title>A relationship between statistical time to breakdown distributions and pre-breakdown negative differential resistance at nanometric scale</title><title>Journal of applied physics</title><description>Using an ultra-high vacuum Conductive atomic force microscopy (C-AFM) current voltage, pre-breakdown negative differential resistance (NDR) characteristics are measured together with the time dependent dielectric breakdown (TDDB) distributions of Si/SiON (1.4 and 2.6 nm thick). Those experimental characteristics are systematically compared. The NDR effect is modelled by a conductive filament growth. It is showed that the Weibull TDDB statistic distribution scale factor is proportional to the growth rate of an individual filament and then has the same dependence on the electric field. The proportionality factor is a power law of the ratio between the surfaces of the CAFM tip and the filament's top. Moreover, it was found that, for the high fields used in those experiments, the TDDB acceleration factor as the growth rate characteristic is proportional to the Zener tunnelling probability. Those observations are discussed in the framework of possible breakdown or forming mechanism.</description><subject>ACCELERATION</subject><subject>Applied physics</subject><subject>ATOMIC FORCE MICROSCOPY</subject><subject>BREAKDOWN</subject><subject>CRYSTAL GROWTH</subject><subject>CURRENTS</subject><subject>Dielectric breakdown</subject><subject>DIELECTRIC MATERIALS</subject><subject>Differential thermal analysis</subject><subject>DISTRIBUTION</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>ELECTRIC FIELDS</subject><subject>ELECTRIC POTENTIAL</subject><subject>FILAMENTS</subject><subject>High vacuum</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NANOSTRUCTURES</subject><subject>NITROGEN COMPOUNDS</subject><subject>OXYGEN COMPOUNDS</subject><subject>Prebreakdown</subject><subject>PROBABILITY</subject><subject>SILICON</subject><subject>SILICON COMPOUNDS</subject><subject>Statistical analysis</subject><subject>SURFACES</subject><subject>TIME DEPENDENCE</subject><subject>TUNNEL EFFECT</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkU1LAzEQhoMoWD8O_oOAJw9bk81uNzlK8QsKXvQcZpOJ3domNUkt_gT_tdEWehqYed535mUIueJszNlE3PJxI6XkUhyREWdSVV3bsmMyYqzmlVSdOiVnKS0Y44VRI_JzRyMuIQ_Bp_mwpj3mLaKnKZdeyoOBJc3DCmkOtI8IHzZsPbVlFId-8y-j4C1dR6wOc4_vRf6FBXQOI_o8FJ-IqejAG6SQqQcfVlhsDE1lC16QEwfLhJf7ek7eHu5fp0_V7OXxeXo3q0wt21zZWoLlqkPbOwAB2DIFTnEGvFclVGfR9Q6l6Duwrm4a6xS0EyataHACSpyT651vKPF0MkNGMzfBezRZ17VgirH2QK1j-NxgynoRNtGXw3TN60nbNYJ3hbrZUSaGlCI6vY7DCuK35kz__UNzvf-H-AVKJICt</recordid><startdate>20140714</startdate><enddate>20140714</enddate><creator>Foissac, R.</creator><creator>Blonkowski, S.</creator><creator>Kogelschatz, M.</creator><creator>Delcroix, P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140714</creationdate><title>A relationship between statistical time to breakdown distributions and pre-breakdown negative differential resistance at nanometric scale</title><author>Foissac, R. ; Blonkowski, S. ; Kogelschatz, M. ; Delcroix, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-d28ad197edbfaa3ae509af910a1b91187defbfe83b7adf244df9a5608d34e6a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ACCELERATION</topic><topic>Applied physics</topic><topic>ATOMIC FORCE MICROSCOPY</topic><topic>BREAKDOWN</topic><topic>CRYSTAL GROWTH</topic><topic>CURRENTS</topic><topic>Dielectric breakdown</topic><topic>DIELECTRIC MATERIALS</topic><topic>Differential thermal analysis</topic><topic>DISTRIBUTION</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>ELECTRIC FIELDS</topic><topic>ELECTRIC POTENTIAL</topic><topic>FILAMENTS</topic><topic>High vacuum</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NANOSTRUCTURES</topic><topic>NITROGEN COMPOUNDS</topic><topic>OXYGEN COMPOUNDS</topic><topic>Prebreakdown</topic><topic>PROBABILITY</topic><topic>SILICON</topic><topic>SILICON COMPOUNDS</topic><topic>Statistical analysis</topic><topic>SURFACES</topic><topic>TIME DEPENDENCE</topic><topic>TUNNEL EFFECT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foissac, R.</creatorcontrib><creatorcontrib>Blonkowski, S.</creatorcontrib><creatorcontrib>Kogelschatz, M.</creatorcontrib><creatorcontrib>Delcroix, P.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foissac, R.</au><au>Blonkowski, S.</au><au>Kogelschatz, M.</au><au>Delcroix, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A relationship between statistical time to breakdown distributions and pre-breakdown negative differential resistance at nanometric scale</atitle><jtitle>Journal of applied physics</jtitle><date>2014-07-14</date><risdate>2014</risdate><volume>116</volume><issue>2</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Using an ultra-high vacuum Conductive atomic force microscopy (C-AFM) current voltage, pre-breakdown negative differential resistance (NDR) characteristics are measured together with the time dependent dielectric breakdown (TDDB) distributions of Si/SiON (1.4 and 2.6 nm thick). Those experimental characteristics are systematically compared. The NDR effect is modelled by a conductive filament growth. It is showed that the Weibull TDDB statistic distribution scale factor is proportional to the growth rate of an individual filament and then has the same dependence on the electric field. The proportionality factor is a power law of the ratio between the surfaces of the CAFM tip and the filament's top. Moreover, it was found that, for the high fields used in those experiments, the TDDB acceleration factor as the growth rate characteristic is proportional to the Zener tunnelling probability. Those observations are discussed in the framework of possible breakdown or forming mechanism.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4888183</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2014-07, Vol.116 (2) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_22309005 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | ACCELERATION Applied physics ATOMIC FORCE MICROSCOPY BREAKDOWN CRYSTAL GROWTH CURRENTS Dielectric breakdown DIELECTRIC MATERIALS Differential thermal analysis DISTRIBUTION ELECTRIC CONDUCTIVITY ELECTRIC FIELDS ELECTRIC POTENTIAL FILAMENTS High vacuum NANOSCIENCE AND NANOTECHNOLOGY NANOSTRUCTURES NITROGEN COMPOUNDS OXYGEN COMPOUNDS Prebreakdown PROBABILITY SILICON SILICON COMPOUNDS Statistical analysis SURFACES TIME DEPENDENCE TUNNEL EFFECT |
title | A relationship between statistical time to breakdown distributions and pre-breakdown negative differential resistance at nanometric scale |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20relationship%20between%20statistical%20time%20to%20breakdown%20distributions%20and%20pre-breakdown%20negative%20differential%20resistance%20at%20nanometric%20scale&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Foissac,%20R.&rft.date=2014-07-14&rft.volume=116&rft.issue=2&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4888183&rft_dat=%3Cproquest_osti_%3E2126574317%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-d28ad197edbfaa3ae509af910a1b91187defbfe83b7adf244df9a5608d34e6a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126574317&rft_id=info:pmid/&rfr_iscdi=true |