Loading…

A relationship between statistical time to breakdown distributions and pre-breakdown negative differential resistance at nanometric scale

Using an ultra-high vacuum Conductive atomic force microscopy (C-AFM) current voltage, pre-breakdown negative differential resistance (NDR) characteristics are measured together with the time dependent dielectric breakdown (TDDB) distributions of Si/SiON (1.4 and 2.6 nm thick). Those experimental ch...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2014-07, Vol.116 (2)
Main Authors: Foissac, R., Blonkowski, S., Kogelschatz, M., Delcroix, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c285t-d28ad197edbfaa3ae509af910a1b91187defbfe83b7adf244df9a5608d34e6a93
cites cdi_FETCH-LOGICAL-c285t-d28ad197edbfaa3ae509af910a1b91187defbfe83b7adf244df9a5608d34e6a93
container_end_page
container_issue 2
container_start_page
container_title Journal of applied physics
container_volume 116
creator Foissac, R.
Blonkowski, S.
Kogelschatz, M.
Delcroix, P.
description Using an ultra-high vacuum Conductive atomic force microscopy (C-AFM) current voltage, pre-breakdown negative differential resistance (NDR) characteristics are measured together with the time dependent dielectric breakdown (TDDB) distributions of Si/SiON (1.4 and 2.6 nm thick). Those experimental characteristics are systematically compared. The NDR effect is modelled by a conductive filament growth. It is showed that the Weibull TDDB statistic distribution scale factor is proportional to the growth rate of an individual filament and then has the same dependence on the electric field. The proportionality factor is a power law of the ratio between the surfaces of the CAFM tip and the filament's top. Moreover, it was found that, for the high fields used in those experiments, the TDDB acceleration factor as the growth rate characteristic is proportional to the Zener tunnelling probability. Those observations are discussed in the framework of possible breakdown or forming mechanism.
doi_str_mv 10.1063/1.4888183
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22309005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126574317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-d28ad197edbfaa3ae509af910a1b91187defbfe83b7adf244df9a5608d34e6a93</originalsourceid><addsrcrecordid>eNpFkU1LAzEQhoMoWD8O_oOAJw9bk81uNzlK8QsKXvQcZpOJ3domNUkt_gT_tdEWehqYed535mUIueJszNlE3PJxI6XkUhyREWdSVV3bsmMyYqzmlVSdOiVnKS0Y44VRI_JzRyMuIQ_Bp_mwpj3mLaKnKZdeyoOBJc3DCmkOtI8IHzZsPbVlFId-8y-j4C1dR6wOc4_vRf6FBXQOI_o8FJ-IqejAG6SQqQcfVlhsDE1lC16QEwfLhJf7ek7eHu5fp0_V7OXxeXo3q0wt21zZWoLlqkPbOwAB2DIFTnEGvFclVGfR9Q6l6Duwrm4a6xS0EyataHACSpyT651vKPF0MkNGMzfBezRZ17VgirH2QK1j-NxgynoRNtGXw3TN60nbNYJ3hbrZUSaGlCI6vY7DCuK35kz__UNzvf-H-AVKJICt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126574317</pqid></control><display><type>article</type><title>A relationship between statistical time to breakdown distributions and pre-breakdown negative differential resistance at nanometric scale</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Foissac, R. ; Blonkowski, S. ; Kogelschatz, M. ; Delcroix, P.</creator><creatorcontrib>Foissac, R. ; Blonkowski, S. ; Kogelschatz, M. ; Delcroix, P.</creatorcontrib><description>Using an ultra-high vacuum Conductive atomic force microscopy (C-AFM) current voltage, pre-breakdown negative differential resistance (NDR) characteristics are measured together with the time dependent dielectric breakdown (TDDB) distributions of Si/SiON (1.4 and 2.6 nm thick). Those experimental characteristics are systematically compared. The NDR effect is modelled by a conductive filament growth. It is showed that the Weibull TDDB statistic distribution scale factor is proportional to the growth rate of an individual filament and then has the same dependence on the electric field. The proportionality factor is a power law of the ratio between the surfaces of the CAFM tip and the filament's top. Moreover, it was found that, for the high fields used in those experiments, the TDDB acceleration factor as the growth rate characteristic is proportional to the Zener tunnelling probability. Those observations are discussed in the framework of possible breakdown or forming mechanism.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4888183</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ACCELERATION ; Applied physics ; ATOMIC FORCE MICROSCOPY ; BREAKDOWN ; CRYSTAL GROWTH ; CURRENTS ; Dielectric breakdown ; DIELECTRIC MATERIALS ; Differential thermal analysis ; DISTRIBUTION ; ELECTRIC CONDUCTIVITY ; ELECTRIC FIELDS ; ELECTRIC POTENTIAL ; FILAMENTS ; High vacuum ; NANOSCIENCE AND NANOTECHNOLOGY ; NANOSTRUCTURES ; NITROGEN COMPOUNDS ; OXYGEN COMPOUNDS ; Prebreakdown ; PROBABILITY ; SILICON ; SILICON COMPOUNDS ; Statistical analysis ; SURFACES ; TIME DEPENDENCE ; TUNNEL EFFECT</subject><ispartof>Journal of applied physics, 2014-07, Vol.116 (2)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-d28ad197edbfaa3ae509af910a1b91187defbfe83b7adf244df9a5608d34e6a93</citedby><cites>FETCH-LOGICAL-c285t-d28ad197edbfaa3ae509af910a1b91187defbfe83b7adf244df9a5608d34e6a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22309005$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Foissac, R.</creatorcontrib><creatorcontrib>Blonkowski, S.</creatorcontrib><creatorcontrib>Kogelschatz, M.</creatorcontrib><creatorcontrib>Delcroix, P.</creatorcontrib><title>A relationship between statistical time to breakdown distributions and pre-breakdown negative differential resistance at nanometric scale</title><title>Journal of applied physics</title><description>Using an ultra-high vacuum Conductive atomic force microscopy (C-AFM) current voltage, pre-breakdown negative differential resistance (NDR) characteristics are measured together with the time dependent dielectric breakdown (TDDB) distributions of Si/SiON (1.4 and 2.6 nm thick). Those experimental characteristics are systematically compared. The NDR effect is modelled by a conductive filament growth. It is showed that the Weibull TDDB statistic distribution scale factor is proportional to the growth rate of an individual filament and then has the same dependence on the electric field. The proportionality factor is a power law of the ratio between the surfaces of the CAFM tip and the filament's top. Moreover, it was found that, for the high fields used in those experiments, the TDDB acceleration factor as the growth rate characteristic is proportional to the Zener tunnelling probability. Those observations are discussed in the framework of possible breakdown or forming mechanism.</description><subject>ACCELERATION</subject><subject>Applied physics</subject><subject>ATOMIC FORCE MICROSCOPY</subject><subject>BREAKDOWN</subject><subject>CRYSTAL GROWTH</subject><subject>CURRENTS</subject><subject>Dielectric breakdown</subject><subject>DIELECTRIC MATERIALS</subject><subject>Differential thermal analysis</subject><subject>DISTRIBUTION</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>ELECTRIC FIELDS</subject><subject>ELECTRIC POTENTIAL</subject><subject>FILAMENTS</subject><subject>High vacuum</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NANOSTRUCTURES</subject><subject>NITROGEN COMPOUNDS</subject><subject>OXYGEN COMPOUNDS</subject><subject>Prebreakdown</subject><subject>PROBABILITY</subject><subject>SILICON</subject><subject>SILICON COMPOUNDS</subject><subject>Statistical analysis</subject><subject>SURFACES</subject><subject>TIME DEPENDENCE</subject><subject>TUNNEL EFFECT</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkU1LAzEQhoMoWD8O_oOAJw9bk81uNzlK8QsKXvQcZpOJ3domNUkt_gT_tdEWehqYed535mUIueJszNlE3PJxI6XkUhyREWdSVV3bsmMyYqzmlVSdOiVnKS0Y44VRI_JzRyMuIQ_Bp_mwpj3mLaKnKZdeyoOBJc3DCmkOtI8IHzZsPbVlFId-8y-j4C1dR6wOc4_vRf6FBXQOI_o8FJ-IqejAG6SQqQcfVlhsDE1lC16QEwfLhJf7ek7eHu5fp0_V7OXxeXo3q0wt21zZWoLlqkPbOwAB2DIFTnEGvFclVGfR9Q6l6Duwrm4a6xS0EyataHACSpyT651vKPF0MkNGMzfBezRZ17VgirH2QK1j-NxgynoRNtGXw3TN60nbNYJ3hbrZUSaGlCI6vY7DCuK35kz__UNzvf-H-AVKJICt</recordid><startdate>20140714</startdate><enddate>20140714</enddate><creator>Foissac, R.</creator><creator>Blonkowski, S.</creator><creator>Kogelschatz, M.</creator><creator>Delcroix, P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140714</creationdate><title>A relationship between statistical time to breakdown distributions and pre-breakdown negative differential resistance at nanometric scale</title><author>Foissac, R. ; Blonkowski, S. ; Kogelschatz, M. ; Delcroix, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-d28ad197edbfaa3ae509af910a1b91187defbfe83b7adf244df9a5608d34e6a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ACCELERATION</topic><topic>Applied physics</topic><topic>ATOMIC FORCE MICROSCOPY</topic><topic>BREAKDOWN</topic><topic>CRYSTAL GROWTH</topic><topic>CURRENTS</topic><topic>Dielectric breakdown</topic><topic>DIELECTRIC MATERIALS</topic><topic>Differential thermal analysis</topic><topic>DISTRIBUTION</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>ELECTRIC FIELDS</topic><topic>ELECTRIC POTENTIAL</topic><topic>FILAMENTS</topic><topic>High vacuum</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NANOSTRUCTURES</topic><topic>NITROGEN COMPOUNDS</topic><topic>OXYGEN COMPOUNDS</topic><topic>Prebreakdown</topic><topic>PROBABILITY</topic><topic>SILICON</topic><topic>SILICON COMPOUNDS</topic><topic>Statistical analysis</topic><topic>SURFACES</topic><topic>TIME DEPENDENCE</topic><topic>TUNNEL EFFECT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foissac, R.</creatorcontrib><creatorcontrib>Blonkowski, S.</creatorcontrib><creatorcontrib>Kogelschatz, M.</creatorcontrib><creatorcontrib>Delcroix, P.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foissac, R.</au><au>Blonkowski, S.</au><au>Kogelschatz, M.</au><au>Delcroix, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A relationship between statistical time to breakdown distributions and pre-breakdown negative differential resistance at nanometric scale</atitle><jtitle>Journal of applied physics</jtitle><date>2014-07-14</date><risdate>2014</risdate><volume>116</volume><issue>2</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Using an ultra-high vacuum Conductive atomic force microscopy (C-AFM) current voltage, pre-breakdown negative differential resistance (NDR) characteristics are measured together with the time dependent dielectric breakdown (TDDB) distributions of Si/SiON (1.4 and 2.6 nm thick). Those experimental characteristics are systematically compared. The NDR effect is modelled by a conductive filament growth. It is showed that the Weibull TDDB statistic distribution scale factor is proportional to the growth rate of an individual filament and then has the same dependence on the electric field. The proportionality factor is a power law of the ratio between the surfaces of the CAFM tip and the filament's top. Moreover, it was found that, for the high fields used in those experiments, the TDDB acceleration factor as the growth rate characteristic is proportional to the Zener tunnelling probability. Those observations are discussed in the framework of possible breakdown or forming mechanism.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4888183</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2014-07, Vol.116 (2)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22309005
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects ACCELERATION
Applied physics
ATOMIC FORCE MICROSCOPY
BREAKDOWN
CRYSTAL GROWTH
CURRENTS
Dielectric breakdown
DIELECTRIC MATERIALS
Differential thermal analysis
DISTRIBUTION
ELECTRIC CONDUCTIVITY
ELECTRIC FIELDS
ELECTRIC POTENTIAL
FILAMENTS
High vacuum
NANOSCIENCE AND NANOTECHNOLOGY
NANOSTRUCTURES
NITROGEN COMPOUNDS
OXYGEN COMPOUNDS
Prebreakdown
PROBABILITY
SILICON
SILICON COMPOUNDS
Statistical analysis
SURFACES
TIME DEPENDENCE
TUNNEL EFFECT
title A relationship between statistical time to breakdown distributions and pre-breakdown negative differential resistance at nanometric scale
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20relationship%20between%20statistical%20time%20to%20breakdown%20distributions%20and%20pre-breakdown%20negative%20differential%20resistance%20at%20nanometric%20scale&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Foissac,%20R.&rft.date=2014-07-14&rft.volume=116&rft.issue=2&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4888183&rft_dat=%3Cproquest_osti_%3E2126574317%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-d28ad197edbfaa3ae509af910a1b91187defbfe83b7adf244df9a5608d34e6a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126574317&rft_id=info:pmid/&rfr_iscdi=true