Loading…

Computational prediction of two-dimensional group-IV mono-chalcogenides

Density functional calculations determine the structure, stability, and electronic properties of two-dimensional materials in the family of group-IV monochalcogenides, MX (M = Ge, Sn, Pb; X = O, S, Se, Te). Calculations with a van der Waals functional show that the two-dimensional IV-VI compounds ar...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2014-07, Vol.105 (4)
Main Authors: Singh, Arunima K., Hennig, Richard G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-55d8b3536278a15c94ec19f224c62360592e9972b7619bf2c89d44bd861d651f3
cites cdi_FETCH-LOGICAL-c351t-55d8b3536278a15c94ec19f224c62360592e9972b7619bf2c89d44bd861d651f3
container_end_page
container_issue 4
container_start_page
container_title Applied physics letters
container_volume 105
creator Singh, Arunima K.
Hennig, Richard G.
description Density functional calculations determine the structure, stability, and electronic properties of two-dimensional materials in the family of group-IV monochalcogenides, MX (M = Ge, Sn, Pb; X = O, S, Se, Te). Calculations with a van der Waals functional show that the two-dimensional IV-VI compounds are most stable in either a highly distorted NaCl-type structure or a single-layer litharge type tetragonal structure. Their formation energies are comparable to single-layer MoS2, indicating the ease of mechanical exfoliation from their layered bulk structures. The phonon spectra confirm their dynamical stability. Using the hybrid HSE06 functional, we find that these materials are semiconductors with bandgaps that are generally larger than for their bulk counterparts due to quantum confinement. The band edge alignments of monolayer group IV-VI materials reveal several type-I and type-II heterostructures, suited for optoelectronics and solar energy conversion.
doi_str_mv 10.1063/1.4891230
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22311363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126579405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-55d8b3536278a15c94ec19f224c62360592e9972b7619bf2c89d44bd861d651f3</originalsourceid><addsrcrecordid>eNpFkMFLwzAYxYMoOKcH_4OCJw-Z-fI1aXOUoXMw8KJeQ5umW8ba1CRF_O_t2MDT4_F-PHiPkHtgC2ASn2CRlwo4sgsyA1YUFAHKSzJjjCGVSsA1uYlxP1nBEWdktfTdMKYqOd9Xh2wItnHmaDLfZunH08Z1to-ndBv8OND1V9b53lOzqw7Gb23vGhtvyVVbHaK9O-ucfL6-fCzf6OZ9tV4-b6hBAYkK0ZQ1CpS8KCsQRuXWgGo5z43kKJlQ3CpV8LqQoOqWm1I1eV43pYRGCmhxTh5OvT4mp6NxyZqd8X1vTdKcT2tR4j81BP892pj03o9hmhA1By5FoXImJurxRJngYwy21UNwXRV-NTB9fFODPr-JfzbzZJ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126579405</pqid></control><display><type>article</type><title>Computational prediction of two-dimensional group-IV mono-chalcogenides</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Singh, Arunima K. ; Hennig, Richard G.</creator><creatorcontrib>Singh, Arunima K. ; Hennig, Richard G.</creatorcontrib><description>Density functional calculations determine the structure, stability, and electronic properties of two-dimensional materials in the family of group-IV monochalcogenides, MX (M = Ge, Sn, Pb; X = O, S, Se, Te). Calculations with a van der Waals functional show that the two-dimensional IV-VI compounds are most stable in either a highly distorted NaCl-type structure or a single-layer litharge type tetragonal structure. Their formation energies are comparable to single-layer MoS2, indicating the ease of mechanical exfoliation from their layered bulk structures. The phonon spectra confirm their dynamical stability. Using the hybrid HSE06 functional, we find that these materials are semiconductors with bandgaps that are generally larger than for their bulk counterparts due to quantum confinement. The band edge alignments of monolayer group IV-VI materials reveal several type-I and type-II heterostructures, suited for optoelectronics and solar energy conversion.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4891230</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; CHALCOGENIDES ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CONFINEMENT ; CRYSTAL STRUCTURE ; DENSITY FUNCTIONAL METHOD ; Dimensional stability ; Dynamic stability ; ELECTRICAL PROPERTIES ; FORECASTING ; FORMATION HEAT ; Free energy ; Germanium ; Heat of formation ; Heterostructures ; Lead ; Mathematical analysis ; Molybdenum disulfide ; MOLYBDENUM SULFIDES ; Optoelectronics ; PHONONS ; Quantum confinement ; Selenium ; SEMICONDUCTOR MATERIALS ; Sodium chloride ; SODIUM CHLORIDES ; SOLAR CELLS ; SOLAR ENERGY CONVERSION ; SPECTRA ; STABILITY ; Structural stability ; Tin ; TWO-DIMENSIONAL CALCULATIONS ; VAN DER WAALS FORCES</subject><ispartof>Applied physics letters, 2014-07, Vol.105 (4)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-55d8b3536278a15c94ec19f224c62360592e9972b7619bf2c89d44bd861d651f3</citedby><cites>FETCH-LOGICAL-c351t-55d8b3536278a15c94ec19f224c62360592e9972b7619bf2c89d44bd861d651f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,782,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22311363$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Arunima K.</creatorcontrib><creatorcontrib>Hennig, Richard G.</creatorcontrib><title>Computational prediction of two-dimensional group-IV mono-chalcogenides</title><title>Applied physics letters</title><description>Density functional calculations determine the structure, stability, and electronic properties of two-dimensional materials in the family of group-IV monochalcogenides, MX (M = Ge, Sn, Pb; X = O, S, Se, Te). Calculations with a van der Waals functional show that the two-dimensional IV-VI compounds are most stable in either a highly distorted NaCl-type structure or a single-layer litharge type tetragonal structure. Their formation energies are comparable to single-layer MoS2, indicating the ease of mechanical exfoliation from their layered bulk structures. The phonon spectra confirm their dynamical stability. Using the hybrid HSE06 functional, we find that these materials are semiconductors with bandgaps that are generally larger than for their bulk counterparts due to quantum confinement. The band edge alignments of monolayer group IV-VI materials reveal several type-I and type-II heterostructures, suited for optoelectronics and solar energy conversion.</description><subject>Applied physics</subject><subject>CHALCOGENIDES</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CONFINEMENT</subject><subject>CRYSTAL STRUCTURE</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>Dimensional stability</subject><subject>Dynamic stability</subject><subject>ELECTRICAL PROPERTIES</subject><subject>FORECASTING</subject><subject>FORMATION HEAT</subject><subject>Free energy</subject><subject>Germanium</subject><subject>Heat of formation</subject><subject>Heterostructures</subject><subject>Lead</subject><subject>Mathematical analysis</subject><subject>Molybdenum disulfide</subject><subject>MOLYBDENUM SULFIDES</subject><subject>Optoelectronics</subject><subject>PHONONS</subject><subject>Quantum confinement</subject><subject>Selenium</subject><subject>SEMICONDUCTOR MATERIALS</subject><subject>Sodium chloride</subject><subject>SODIUM CHLORIDES</subject><subject>SOLAR CELLS</subject><subject>SOLAR ENERGY CONVERSION</subject><subject>SPECTRA</subject><subject>STABILITY</subject><subject>Structural stability</subject><subject>Tin</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><subject>VAN DER WAALS FORCES</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkMFLwzAYxYMoOKcH_4OCJw-Z-fI1aXOUoXMw8KJeQ5umW8ba1CRF_O_t2MDT4_F-PHiPkHtgC2ASn2CRlwo4sgsyA1YUFAHKSzJjjCGVSsA1uYlxP1nBEWdktfTdMKYqOd9Xh2wItnHmaDLfZunH08Z1to-ndBv8OND1V9b53lOzqw7Gb23vGhtvyVVbHaK9O-ucfL6-fCzf6OZ9tV4-b6hBAYkK0ZQ1CpS8KCsQRuXWgGo5z43kKJlQ3CpV8LqQoOqWm1I1eV43pYRGCmhxTh5OvT4mp6NxyZqd8X1vTdKcT2tR4j81BP892pj03o9hmhA1By5FoXImJurxRJngYwy21UNwXRV-NTB9fFODPr-JfzbzZJ4</recordid><startdate>20140728</startdate><enddate>20140728</enddate><creator>Singh, Arunima K.</creator><creator>Hennig, Richard G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140728</creationdate><title>Computational prediction of two-dimensional group-IV mono-chalcogenides</title><author>Singh, Arunima K. ; Hennig, Richard G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-55d8b3536278a15c94ec19f224c62360592e9972b7619bf2c89d44bd861d651f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>CHALCOGENIDES</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CONFINEMENT</topic><topic>CRYSTAL STRUCTURE</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>Dimensional stability</topic><topic>Dynamic stability</topic><topic>ELECTRICAL PROPERTIES</topic><topic>FORECASTING</topic><topic>FORMATION HEAT</topic><topic>Free energy</topic><topic>Germanium</topic><topic>Heat of formation</topic><topic>Heterostructures</topic><topic>Lead</topic><topic>Mathematical analysis</topic><topic>Molybdenum disulfide</topic><topic>MOLYBDENUM SULFIDES</topic><topic>Optoelectronics</topic><topic>PHONONS</topic><topic>Quantum confinement</topic><topic>Selenium</topic><topic>SEMICONDUCTOR MATERIALS</topic><topic>Sodium chloride</topic><topic>SODIUM CHLORIDES</topic><topic>SOLAR CELLS</topic><topic>SOLAR ENERGY CONVERSION</topic><topic>SPECTRA</topic><topic>STABILITY</topic><topic>Structural stability</topic><topic>Tin</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><topic>VAN DER WAALS FORCES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Arunima K.</creatorcontrib><creatorcontrib>Hennig, Richard G.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Arunima K.</au><au>Hennig, Richard G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational prediction of two-dimensional group-IV mono-chalcogenides</atitle><jtitle>Applied physics letters</jtitle><date>2014-07-28</date><risdate>2014</risdate><volume>105</volume><issue>4</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Density functional calculations determine the structure, stability, and electronic properties of two-dimensional materials in the family of group-IV monochalcogenides, MX (M = Ge, Sn, Pb; X = O, S, Se, Te). Calculations with a van der Waals functional show that the two-dimensional IV-VI compounds are most stable in either a highly distorted NaCl-type structure or a single-layer litharge type tetragonal structure. Their formation energies are comparable to single-layer MoS2, indicating the ease of mechanical exfoliation from their layered bulk structures. The phonon spectra confirm their dynamical stability. Using the hybrid HSE06 functional, we find that these materials are semiconductors with bandgaps that are generally larger than for their bulk counterparts due to quantum confinement. The band edge alignments of monolayer group IV-VI materials reveal several type-I and type-II heterostructures, suited for optoelectronics and solar energy conversion.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4891230</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2014-07, Vol.105 (4)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22311363
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Applied physics
CHALCOGENIDES
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CONFINEMENT
CRYSTAL STRUCTURE
DENSITY FUNCTIONAL METHOD
Dimensional stability
Dynamic stability
ELECTRICAL PROPERTIES
FORECASTING
FORMATION HEAT
Free energy
Germanium
Heat of formation
Heterostructures
Lead
Mathematical analysis
Molybdenum disulfide
MOLYBDENUM SULFIDES
Optoelectronics
PHONONS
Quantum confinement
Selenium
SEMICONDUCTOR MATERIALS
Sodium chloride
SODIUM CHLORIDES
SOLAR CELLS
SOLAR ENERGY CONVERSION
SPECTRA
STABILITY
Structural stability
Tin
TWO-DIMENSIONAL CALCULATIONS
VAN DER WAALS FORCES
title Computational prediction of two-dimensional group-IV mono-chalcogenides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20prediction%20of%20two-dimensional%20group-IV%20mono-chalcogenides&rft.jtitle=Applied%20physics%20letters&rft.au=Singh,%20Arunima%20K.&rft.date=2014-07-28&rft.volume=105&rft.issue=4&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4891230&rft_dat=%3Cproquest_osti_%3E2126579405%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-55d8b3536278a15c94ec19f224c62360592e9972b7619bf2c89d44bd861d651f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126579405&rft_id=info:pmid/&rfr_iscdi=true