Loading…
Modulating above-room-temperature magnetism in Ga-implanted Fe5GeTe2 van der Waals magnets
The creation of van der Waals (vdW) ferromagnets with tunable Curie temperature (TC) and magnetic anisotropy is essential in developing vdW magnet-based devices. Here, we report an effective and reliable method for modulating the magnetic properties of vdW Fe5GeTe2 by site-specific Ga+ implantation....
Saved in:
Published in: | APL materials 2023-09, Vol.11 (9), p.091101-091101-8 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The creation of van der Waals (vdW) ferromagnets with tunable Curie temperature (TC) and magnetic anisotropy is essential in developing vdW magnet-based devices. Here, we report an effective and reliable method for modulating the magnetic properties of vdW Fe5GeTe2 by site-specific Ga+ implantation. In this study, we report an easy axis in the ab-plane for bulk Fe5GeTe2 (TC = 310 K) and an axis out of the plane for thin Fe5GeTe2 flakes (TC = 290 K). Combining element-resolved photoemission electron microscopy and spatially resolved magneto-optic Kerr microscopy, we find that the implantation of a tiny amount of 10−3 Ga+·Å−3 in Fe5GeTe2 greatly enhances the TC from 290 to 360 K and switches the magnetic easy axis from the out-of-plane c axis to the ab-plane. The room-temperature x-ray magnetic circular dichroism signal is enhanced from 0% to 9% at an implantation level of 10−2 Ga+·Å−3. These results provide new opportunities for tailoring the magnetic properties of vdW materials beyond room temperature. |
---|---|
ISSN: | 2166-532X 2166-532X |
DOI: | 10.1063/5.0168468 |