Loading…
ASTEROSEISMOLOGICAL STUDY OF MASSIVE ZZ CETI STARS WITH FULLY EVOLUTIONARY MODELS
We present the first asteroseismological study for 42 massive ZZ Ceti stars based on a large set of fully evolutionary carbon-oxygen core DA white dwarf models characterized by a detailed and consistent chemical inner profile for the core and the envelope. Our sample comprises all of the ZZ Ceti sta...
Saved in:
Published in: | The Astrophysical journal 2013-12, Vol.779 (1), p.1-24 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present the first asteroseismological study for 42 massive ZZ Ceti stars based on a large set of fully evolutionary carbon-oxygen core DA white dwarf models characterized by a detailed and consistent chemical inner profile for the core and the envelope. Our sample comprises all of the ZZ Ceti stars with spectroscopic stellar masses between 0.72 and 1.05 M sub([middot in circle]) known to date. The asteroseismological analysis of a set of 42 stars enables study of the ensemble properties of the massive, pulsating white dwarf stars with carbon-oxygen cores, in particular the thickness of the hydrogen envelope and the stellar mass. A significant fraction of stars in our sample have stellar mass that is high enough to crystallize at the effective temperatures of the ZZ Ceti instability strip, which enables us to study the effects of crystallization on the pulsation properties of these stars. Our results show that the phase diagram presented in Horowitz et al. seems to be a good representation of the crystallization process inside white dwarf stars, in agreement with the results from white dwarf luminosity function in globular clusters. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1088/0004-637X/779/1/58 |