Loading…
Super-Planckian far-zone thermal emission from asymmetric hyperbolic metamaterials
We demonstrate the production of strong directive thermal emissions in the far-field zone of asymmetric hyperbolic metamaterials (AHMs), exceeding that predicted by Planck's limit. Asymmetry is inherent to the uniaxial medium, where the optical axis is tilted with respect to medium interfaces....
Saved in:
Published in: | Applied physics letters 2014-10, Vol.105 (16) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate the production of strong directive thermal emissions in the far-field zone of asymmetric hyperbolic metamaterials (AHMs), exceeding that predicted by Planck's limit. Asymmetry is inherent to the uniaxial medium, where the optical axis is tilted with respect to medium interfaces. The use of AHMs is shown to enhance the free-space coupling efficiency of thermally radiated waves, resulting in Super-Planckian far-field thermal emission in certain directions. This effect is impossible in usual hyperbolic materials because emission of high density of states (DOS) photons into vacuum with smaller DOS is preserved by the total internal reflection. Different plasmonic metamaterials are proposed for realizing AHM media; the thermal emission from a AHM, based on a grapheme multilayer structure, is presented, as an example. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4899126 |