Loading…
Transition from amplitude to oscillation death in a network of oscillators
We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population...
Saved in:
Published in: | Chaos (Woodbury, N.Y.) N.Y.), 2014-12, Vol.24 (4), p.043103-043103 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c376t-49eba3cb2b84b30f697a4caea9826749524b3144ec612840fb7d9821523bb00c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c376t-49eba3cb2b84b30f697a4caea9826749524b3144ec612840fb7d9821523bb00c3 |
container_end_page | 043103 |
container_issue | 4 |
container_start_page | 043103 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 24 |
creator | Nandan, Mauparna Hens, C R Pal, Pinaki Dana, Syamal K |
description | We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics. |
doi_str_mv | 10.1063/1.4897446 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22351001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1641857505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-49eba3cb2b84b30f697a4caea9826749524b3144ec612840fb7d9821523bb00c3</originalsourceid><addsrcrecordid>eNpFkU1PwzAMhiMEYmNw4A-gSFzg0JHvtEc08alJXMY5StNU61iTkaRC_HsyNsbJlv3otV8bgEuMphgJeoenrKwkY-IIjDEqq0KKkhxvc84KzBEagbMYVwghTCg_BSPCOWeI0DF4XQTtYpc672AbfA91v1l3aWgsTB76aLr1Wv92G6vTEnYOauhs-vLhA_r2QPgQz8FJq9fRXuzjBLw_Pixmz8X87elldj8vDJUiFayytaamJnXJaopaUUnNjLa6KomQrOIklzFj1ghMSobaWja5hTmhdY2QoRNwvdP1MXUqz0_WLI13zpqkSDaIs89M3eyoTfCfg41J9V00Nu_qrB-iwoLhkkuO-L_gAV35IbjsQRFMBKdY5ltNwO2OMsHHGGyrNqHrdfhWGKntGxRW-zdk9mqvONS9bQ7k393pDxUgf2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126531702</pqid></control><display><type>article</type><title>Transition from amplitude to oscillation death in a network of oscillators</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Nandan, Mauparna ; Hens, C R ; Pal, Pinaki ; Dana, Syamal K</creator><creatorcontrib>Nandan, Mauparna ; Hens, C R ; Pal, Pinaki ; Dana, Syamal K</creatorcontrib><description>We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4897446</identifier><identifier>PMID: 25554023</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>AMPLITUDES ; BIFURCATION ; Bifurcations ; Broken symmetry ; CHAOS THEORY ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Clusters ; LIMIT CYCLE ; Links ; Mathematical models ; MEAN-FIELD THEORY ; OSCILLATIONS ; OSCILLATORS ; Steady state ; STEADY-STATE CONDITIONS ; SYMMETRY BREAKING ; System dynamics</subject><ispartof>Chaos (Woodbury, N.Y.), 2014-12, Vol.24 (4), p.043103-043103</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-49eba3cb2b84b30f697a4caea9826749524b3144ec612840fb7d9821523bb00c3</citedby><cites>FETCH-LOGICAL-c376t-49eba3cb2b84b30f697a4caea9826749524b3144ec612840fb7d9821523bb00c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25554023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22351001$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nandan, Mauparna</creatorcontrib><creatorcontrib>Hens, C R</creatorcontrib><creatorcontrib>Pal, Pinaki</creatorcontrib><creatorcontrib>Dana, Syamal K</creatorcontrib><title>Transition from amplitude to oscillation death in a network of oscillators</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.</description><subject>AMPLITUDES</subject><subject>BIFURCATION</subject><subject>Bifurcations</subject><subject>Broken symmetry</subject><subject>CHAOS THEORY</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Clusters</subject><subject>LIMIT CYCLE</subject><subject>Links</subject><subject>Mathematical models</subject><subject>MEAN-FIELD THEORY</subject><subject>OSCILLATIONS</subject><subject>OSCILLATORS</subject><subject>Steady state</subject><subject>STEADY-STATE CONDITIONS</subject><subject>SYMMETRY BREAKING</subject><subject>System dynamics</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkU1PwzAMhiMEYmNw4A-gSFzg0JHvtEc08alJXMY5StNU61iTkaRC_HsyNsbJlv3otV8bgEuMphgJeoenrKwkY-IIjDEqq0KKkhxvc84KzBEagbMYVwghTCg_BSPCOWeI0DF4XQTtYpc672AbfA91v1l3aWgsTB76aLr1Wv92G6vTEnYOauhs-vLhA_r2QPgQz8FJq9fRXuzjBLw_Pixmz8X87elldj8vDJUiFayytaamJnXJaopaUUnNjLa6KomQrOIklzFj1ghMSobaWja5hTmhdY2QoRNwvdP1MXUqz0_WLI13zpqkSDaIs89M3eyoTfCfg41J9V00Nu_qrB-iwoLhkkuO-L_gAV35IbjsQRFMBKdY5ltNwO2OMsHHGGyrNqHrdfhWGKntGxRW-zdk9mqvONS9bQ7k393pDxUgf2g</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Nandan, Mauparna</creator><creator>Hens, C R</creator><creator>Pal, Pinaki</creator><creator>Dana, Syamal K</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20141201</creationdate><title>Transition from amplitude to oscillation death in a network of oscillators</title><author>Nandan, Mauparna ; Hens, C R ; Pal, Pinaki ; Dana, Syamal K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-49eba3cb2b84b30f697a4caea9826749524b3144ec612840fb7d9821523bb00c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AMPLITUDES</topic><topic>BIFURCATION</topic><topic>Bifurcations</topic><topic>Broken symmetry</topic><topic>CHAOS THEORY</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Clusters</topic><topic>LIMIT CYCLE</topic><topic>Links</topic><topic>Mathematical models</topic><topic>MEAN-FIELD THEORY</topic><topic>OSCILLATIONS</topic><topic>OSCILLATORS</topic><topic>Steady state</topic><topic>STEADY-STATE CONDITIONS</topic><topic>SYMMETRY BREAKING</topic><topic>System dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nandan, Mauparna</creatorcontrib><creatorcontrib>Hens, C R</creatorcontrib><creatorcontrib>Pal, Pinaki</creatorcontrib><creatorcontrib>Dana, Syamal K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nandan, Mauparna</au><au>Hens, C R</au><au>Pal, Pinaki</au><au>Dana, Syamal K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition from amplitude to oscillation death in a network of oscillators</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>24</volume><issue>4</issue><spage>043103</spage><epage>043103</epage><pages>043103-043103</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><abstract>We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25554023</pmid><doi>10.1063/1.4897446</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2014-12, Vol.24 (4), p.043103-043103 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_osti_scitechconnect_22351001 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | AMPLITUDES BIFURCATION Bifurcations Broken symmetry CHAOS THEORY CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Clusters LIMIT CYCLE Links Mathematical models MEAN-FIELD THEORY OSCILLATIONS OSCILLATORS Steady state STEADY-STATE CONDITIONS SYMMETRY BREAKING System dynamics |
title | Transition from amplitude to oscillation death in a network of oscillators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20from%20amplitude%20to%20oscillation%20death%20in%20a%20network%20of%20oscillators&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Nandan,%20Mauparna&rft.date=2014-12-01&rft.volume=24&rft.issue=4&rft.spage=043103&rft.epage=043103&rft.pages=043103-043103&rft.issn=1054-1500&rft.eissn=1089-7682&rft_id=info:doi/10.1063/1.4897446&rft_dat=%3Cproquest_osti_%3E1641857505%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-49eba3cb2b84b30f697a4caea9826749524b3144ec612840fb7d9821523bb00c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126531702&rft_id=info:pmid/25554023&rfr_iscdi=true |