Loading…

Transition from amplitude to oscillation death in a network of oscillators

We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population...

Full description

Saved in:
Bibliographic Details
Published in:Chaos (Woodbury, N.Y.) N.Y.), 2014-12, Vol.24 (4), p.043103-043103
Main Authors: Nandan, Mauparna, Hens, C R, Pal, Pinaki, Dana, Syamal K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-49eba3cb2b84b30f697a4caea9826749524b3144ec612840fb7d9821523bb00c3
cites cdi_FETCH-LOGICAL-c376t-49eba3cb2b84b30f697a4caea9826749524b3144ec612840fb7d9821523bb00c3
container_end_page 043103
container_issue 4
container_start_page 043103
container_title Chaos (Woodbury, N.Y.)
container_volume 24
creator Nandan, Mauparna
Hens, C R
Pal, Pinaki
Dana, Syamal K
description We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.
doi_str_mv 10.1063/1.4897446
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22351001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1641857505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-49eba3cb2b84b30f697a4caea9826749524b3144ec612840fb7d9821523bb00c3</originalsourceid><addsrcrecordid>eNpFkU1PwzAMhiMEYmNw4A-gSFzg0JHvtEc08alJXMY5StNU61iTkaRC_HsyNsbJlv3otV8bgEuMphgJeoenrKwkY-IIjDEqq0KKkhxvc84KzBEagbMYVwghTCg_BSPCOWeI0DF4XQTtYpc672AbfA91v1l3aWgsTB76aLr1Wv92G6vTEnYOauhs-vLhA_r2QPgQz8FJq9fRXuzjBLw_Pixmz8X87elldj8vDJUiFayytaamJnXJaopaUUnNjLa6KomQrOIklzFj1ghMSobaWja5hTmhdY2QoRNwvdP1MXUqz0_WLI13zpqkSDaIs89M3eyoTfCfg41J9V00Nu_qrB-iwoLhkkuO-L_gAV35IbjsQRFMBKdY5ltNwO2OMsHHGGyrNqHrdfhWGKntGxRW-zdk9mqvONS9bQ7k393pDxUgf2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126531702</pqid></control><display><type>article</type><title>Transition from amplitude to oscillation death in a network of oscillators</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Nandan, Mauparna ; Hens, C R ; Pal, Pinaki ; Dana, Syamal K</creator><creatorcontrib>Nandan, Mauparna ; Hens, C R ; Pal, Pinaki ; Dana, Syamal K</creatorcontrib><description>We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4897446</identifier><identifier>PMID: 25554023</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>AMPLITUDES ; BIFURCATION ; Bifurcations ; Broken symmetry ; CHAOS THEORY ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Clusters ; LIMIT CYCLE ; Links ; Mathematical models ; MEAN-FIELD THEORY ; OSCILLATIONS ; OSCILLATORS ; Steady state ; STEADY-STATE CONDITIONS ; SYMMETRY BREAKING ; System dynamics</subject><ispartof>Chaos (Woodbury, N.Y.), 2014-12, Vol.24 (4), p.043103-043103</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-49eba3cb2b84b30f697a4caea9826749524b3144ec612840fb7d9821523bb00c3</citedby><cites>FETCH-LOGICAL-c376t-49eba3cb2b84b30f697a4caea9826749524b3144ec612840fb7d9821523bb00c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25554023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22351001$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nandan, Mauparna</creatorcontrib><creatorcontrib>Hens, C R</creatorcontrib><creatorcontrib>Pal, Pinaki</creatorcontrib><creatorcontrib>Dana, Syamal K</creatorcontrib><title>Transition from amplitude to oscillation death in a network of oscillators</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.</description><subject>AMPLITUDES</subject><subject>BIFURCATION</subject><subject>Bifurcations</subject><subject>Broken symmetry</subject><subject>CHAOS THEORY</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Clusters</subject><subject>LIMIT CYCLE</subject><subject>Links</subject><subject>Mathematical models</subject><subject>MEAN-FIELD THEORY</subject><subject>OSCILLATIONS</subject><subject>OSCILLATORS</subject><subject>Steady state</subject><subject>STEADY-STATE CONDITIONS</subject><subject>SYMMETRY BREAKING</subject><subject>System dynamics</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkU1PwzAMhiMEYmNw4A-gSFzg0JHvtEc08alJXMY5StNU61iTkaRC_HsyNsbJlv3otV8bgEuMphgJeoenrKwkY-IIjDEqq0KKkhxvc84KzBEagbMYVwghTCg_BSPCOWeI0DF4XQTtYpc672AbfA91v1l3aWgsTB76aLr1Wv92G6vTEnYOauhs-vLhA_r2QPgQz8FJq9fRXuzjBLw_Pixmz8X87elldj8vDJUiFayytaamJnXJaopaUUnNjLa6KomQrOIklzFj1ghMSobaWja5hTmhdY2QoRNwvdP1MXUqz0_WLI13zpqkSDaIs89M3eyoTfCfg41J9V00Nu_qrB-iwoLhkkuO-L_gAV35IbjsQRFMBKdY5ltNwO2OMsHHGGyrNqHrdfhWGKntGxRW-zdk9mqvONS9bQ7k393pDxUgf2g</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Nandan, Mauparna</creator><creator>Hens, C R</creator><creator>Pal, Pinaki</creator><creator>Dana, Syamal K</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20141201</creationdate><title>Transition from amplitude to oscillation death in a network of oscillators</title><author>Nandan, Mauparna ; Hens, C R ; Pal, Pinaki ; Dana, Syamal K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-49eba3cb2b84b30f697a4caea9826749524b3144ec612840fb7d9821523bb00c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AMPLITUDES</topic><topic>BIFURCATION</topic><topic>Bifurcations</topic><topic>Broken symmetry</topic><topic>CHAOS THEORY</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Clusters</topic><topic>LIMIT CYCLE</topic><topic>Links</topic><topic>Mathematical models</topic><topic>MEAN-FIELD THEORY</topic><topic>OSCILLATIONS</topic><topic>OSCILLATORS</topic><topic>Steady state</topic><topic>STEADY-STATE CONDITIONS</topic><topic>SYMMETRY BREAKING</topic><topic>System dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nandan, Mauparna</creatorcontrib><creatorcontrib>Hens, C R</creatorcontrib><creatorcontrib>Pal, Pinaki</creatorcontrib><creatorcontrib>Dana, Syamal K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nandan, Mauparna</au><au>Hens, C R</au><au>Pal, Pinaki</au><au>Dana, Syamal K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition from amplitude to oscillation death in a network of oscillators</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>24</volume><issue>4</issue><spage>043103</spage><epage>043103</epage><pages>043103-043103</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><abstract>We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25554023</pmid><doi>10.1063/1.4897446</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2014-12, Vol.24 (4), p.043103-043103
issn 1054-1500
1089-7682
language eng
recordid cdi_osti_scitechconnect_22351001
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects AMPLITUDES
BIFURCATION
Bifurcations
Broken symmetry
CHAOS THEORY
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Clusters
LIMIT CYCLE
Links
Mathematical models
MEAN-FIELD THEORY
OSCILLATIONS
OSCILLATORS
Steady state
STEADY-STATE CONDITIONS
SYMMETRY BREAKING
System dynamics
title Transition from amplitude to oscillation death in a network of oscillators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20from%20amplitude%20to%20oscillation%20death%20in%20a%20network%20of%20oscillators&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Nandan,%20Mauparna&rft.date=2014-12-01&rft.volume=24&rft.issue=4&rft.spage=043103&rft.epage=043103&rft.pages=043103-043103&rft.issn=1054-1500&rft.eissn=1089-7682&rft_id=info:doi/10.1063/1.4897446&rft_dat=%3Cproquest_osti_%3E1641857505%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-49eba3cb2b84b30f697a4caea9826749524b3144ec612840fb7d9821523bb00c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126531702&rft_id=info:pmid/25554023&rfr_iscdi=true