Loading…
ON SILICON GROUP ELEMENTS EJECTED BY SUPERNOVAE TYPE IA
There is evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Y sub(e) at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre-explosive convective burning. To dat...
Saved in:
Published in: | The Astrophysical journal 2014-06, Vol.787 (2), p.1-9 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a445t-810dcfc8e4a68501aaf509983ab6acad1d4022c3d6c507a910782491339d7ff73 |
---|---|
cites | cdi_FETCH-LOGICAL-a445t-810dcfc8e4a68501aaf509983ab6acad1d4022c3d6c507a910782491339d7ff73 |
container_end_page | 9 |
container_issue | 2 |
container_start_page | 1 |
container_title | The Astrophysical journal |
container_volume | 787 |
creator | De, Soma Timmes, F X Brown, Edward F Calder, Alan C Townsley, Dean M ATHANASSIADOU, THEMIS CHAMULAK, DAVID A Hawley, Wendy Jack, Dennis |
description | There is evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Y sub(e) at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre-explosive convective burning. To date, determining the makeup of the white dwarf progenitor has relied on indirect proxies, such as the average metallicity of the host stellar population. In this paper, we present analytical calculations supporting the idea that the electron fraction of the progenitor systematically influences the nucleosynthesis of silicon group ejecta in Type Ia supernovae. In particular, we suggest the abundances generated in quasi-nuclear statistical equilibrium are preserved during the subsequent freeze-out. This allows potential recovery of Y sub(e) at explosion from the abundances recovered from an observed spectra. We show that measurement of super(28)Si, super(32)S, super(40)Ca, and super(54)Fe abundances can be used to construct Y sub(e) in the silicon-rich regions of the supernovae. If these four abundances are determined exactly, they are sufficient to recover Y sub(e) to 6%. This is because these isotopes dominate the composition of silicon-rich material and iron-rich material in quasi-nuclear statistical equilibrium. Analytical analysis shows the super(28)Si abundance is insensitive to Y sub(e), the super(32)S abundance has a nearly linear trend with Y sub(e), and the super(40)Ca abundance has a nearly quadratic trend with Y sub(e). We verify these trends with post-processing of one-dimensional models and show that these trends are reflected in the model's synthetic spectra. |
doi_str_mv | 10.1088/0004-637X/787/2/149 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22356765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718958559</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-810dcfc8e4a68501aaf509983ab6acad1d4022c3d6c507a910782491339d7ff73</originalsourceid><addsrcrecordid>eNqN0d9LwzAQB_AgCs7pX-BLwRd9qM01SZM8zhm3Sl3Hfoh7CjFtWWWus-kE_3tbJnv26bjjw3HcF6FrwPeAhQgwxtSPCH8LuOBBGACVJ6gHjAifEsZPUe8oztGFcx9dG0rZQzydePM4iYdtHc3S5dRTiXpRk8XcU89quFCP3sPKmy-najZJXwfKW6ymyosHl-isMBuXX_3VPlo-qcVw7CfpKB4OEt9QyhpfAM5sYUVOTSQYBmMKhqUUxLxHxpoMMorD0JIssgxzIwFzEVIJhMiMFwUnfXRz2Fu5ptTOlk1u17babnPb6DAkLOIRa9XdQa3NRu_q8tPUP7oypR4PEt3NMFAKGMQ3tPb2YHd19bXPXaM_S2fzzcZs82rvNHAQkgnG5D8olhAxFnWUHKitK-fqvDieAVh3Genu5bpLQLcZ6VC3GZFfu9Z7uQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709165569</pqid></control><display><type>article</type><title>ON SILICON GROUP ELEMENTS EJECTED BY SUPERNOVAE TYPE IA</title><source>EZB Electronic Journals Library</source><creator>De, Soma ; Timmes, F X ; Brown, Edward F ; Calder, Alan C ; Townsley, Dean M ; ATHANASSIADOU, THEMIS ; CHAMULAK, DAVID A ; Hawley, Wendy ; Jack, Dennis</creator><creatorcontrib>De, Soma ; Timmes, F X ; Brown, Edward F ; Calder, Alan C ; Townsley, Dean M ; ATHANASSIADOU, THEMIS ; CHAMULAK, DAVID A ; Hawley, Wendy ; Jack, Dennis</creatorcontrib><description>There is evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Y sub(e) at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre-explosive convective burning. To date, determining the makeup of the white dwarf progenitor has relied on indirect proxies, such as the average metallicity of the host stellar population. In this paper, we present analytical calculations supporting the idea that the electron fraction of the progenitor systematically influences the nucleosynthesis of silicon group ejecta in Type Ia supernovae. In particular, we suggest the abundances generated in quasi-nuclear statistical equilibrium are preserved during the subsequent freeze-out. This allows potential recovery of Y sub(e) at explosion from the abundances recovered from an observed spectra. We show that measurement of super(28)Si, super(32)S, super(40)Ca, and super(54)Fe abundances can be used to construct Y sub(e) in the silicon-rich regions of the supernovae. If these four abundances are determined exactly, they are sufficient to recover Y sub(e) to 6%. This is because these isotopes dominate the composition of silicon-rich material and iron-rich material in quasi-nuclear statistical equilibrium. Analytical analysis shows the super(28)Si abundance is insensitive to Y sub(e), the super(32)S abundance has a nearly linear trend with Y sub(e), and the super(40)Ca abundance has a nearly quadratic trend with Y sub(e). We verify these trends with post-processing of one-dimensional models and show that these trends are reflected in the model's synthetic spectra.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/787/2/149</identifier><language>eng</language><publisher>United States: American Astronomical Society</publisher><subject>ABUNDANCE ; Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; BRIGHTNESS ; CALCIUM 40 ; EQUILIBRIUM ; Explosions ; EXPLOSIVES ; IRON 54 ; Mathematical analysis ; METALLICITY ; NUCLEAR REACTIONS ; NUCLEOSYNTHESIS ; ONE-DIMENSIONAL CALCULATIONS ; Progenitors (astrophysics) ; Sciences of the Universe ; SILICON ; SILICON 28 ; SPECTRA ; SULFUR 32 ; SUPERNOVAE ; Trends ; WHITE DWARF STARS</subject><ispartof>The Astrophysical journal, 2014-06, Vol.787 (2), p.1-9</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-810dcfc8e4a68501aaf509983ab6acad1d4022c3d6c507a910782491339d7ff73</citedby><cites>FETCH-LOGICAL-a445t-810dcfc8e4a68501aaf509983ab6acad1d4022c3d6c507a910782491339d7ff73</cites><orcidid>0000-0002-9538-5948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01441018$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22356765$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>De, Soma</creatorcontrib><creatorcontrib>Timmes, F X</creatorcontrib><creatorcontrib>Brown, Edward F</creatorcontrib><creatorcontrib>Calder, Alan C</creatorcontrib><creatorcontrib>Townsley, Dean M</creatorcontrib><creatorcontrib>ATHANASSIADOU, THEMIS</creatorcontrib><creatorcontrib>CHAMULAK, DAVID A</creatorcontrib><creatorcontrib>Hawley, Wendy</creatorcontrib><creatorcontrib>Jack, Dennis</creatorcontrib><title>ON SILICON GROUP ELEMENTS EJECTED BY SUPERNOVAE TYPE IA</title><title>The Astrophysical journal</title><description>There is evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Y sub(e) at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre-explosive convective burning. To date, determining the makeup of the white dwarf progenitor has relied on indirect proxies, such as the average metallicity of the host stellar population. In this paper, we present analytical calculations supporting the idea that the electron fraction of the progenitor systematically influences the nucleosynthesis of silicon group ejecta in Type Ia supernovae. In particular, we suggest the abundances generated in quasi-nuclear statistical equilibrium are preserved during the subsequent freeze-out. This allows potential recovery of Y sub(e) at explosion from the abundances recovered from an observed spectra. We show that measurement of super(28)Si, super(32)S, super(40)Ca, and super(54)Fe abundances can be used to construct Y sub(e) in the silicon-rich regions of the supernovae. If these four abundances are determined exactly, they are sufficient to recover Y sub(e) to 6%. This is because these isotopes dominate the composition of silicon-rich material and iron-rich material in quasi-nuclear statistical equilibrium. Analytical analysis shows the super(28)Si abundance is insensitive to Y sub(e), the super(32)S abundance has a nearly linear trend with Y sub(e), and the super(40)Ca abundance has a nearly quadratic trend with Y sub(e). We verify these trends with post-processing of one-dimensional models and show that these trends are reflected in the model's synthetic spectra.</description><subject>ABUNDANCE</subject><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>BRIGHTNESS</subject><subject>CALCIUM 40</subject><subject>EQUILIBRIUM</subject><subject>Explosions</subject><subject>EXPLOSIVES</subject><subject>IRON 54</subject><subject>Mathematical analysis</subject><subject>METALLICITY</subject><subject>NUCLEAR REACTIONS</subject><subject>NUCLEOSYNTHESIS</subject><subject>ONE-DIMENSIONAL CALCULATIONS</subject><subject>Progenitors (astrophysics)</subject><subject>Sciences of the Universe</subject><subject>SILICON</subject><subject>SILICON 28</subject><subject>SPECTRA</subject><subject>SULFUR 32</subject><subject>SUPERNOVAE</subject><subject>Trends</subject><subject>WHITE DWARF STARS</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0d9LwzAQB_AgCs7pX-BLwRd9qM01SZM8zhm3Sl3Hfoh7CjFtWWWus-kE_3tbJnv26bjjw3HcF6FrwPeAhQgwxtSPCH8LuOBBGACVJ6gHjAifEsZPUe8oztGFcx9dG0rZQzydePM4iYdtHc3S5dRTiXpRk8XcU89quFCP3sPKmy-najZJXwfKW6ymyosHl-isMBuXX_3VPlo-qcVw7CfpKB4OEt9QyhpfAM5sYUVOTSQYBmMKhqUUxLxHxpoMMorD0JIssgxzIwFzEVIJhMiMFwUnfXRz2Fu5ptTOlk1u17babnPb6DAkLOIRa9XdQa3NRu_q8tPUP7oypR4PEt3NMFAKGMQ3tPb2YHd19bXPXaM_S2fzzcZs82rvNHAQkgnG5D8olhAxFnWUHKitK-fqvDieAVh3Genu5bpLQLcZ6VC3GZFfu9Z7uQ</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>De, Soma</creator><creator>Timmes, F X</creator><creator>Brown, Edward F</creator><creator>Calder, Alan C</creator><creator>Townsley, Dean M</creator><creator>ATHANASSIADOU, THEMIS</creator><creator>CHAMULAK, DAVID A</creator><creator>Hawley, Wendy</creator><creator>Jack, Dennis</creator><general>American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9538-5948</orcidid></search><sort><creationdate>20140601</creationdate><title>ON SILICON GROUP ELEMENTS EJECTED BY SUPERNOVAE TYPE IA</title><author>De, Soma ; Timmes, F X ; Brown, Edward F ; Calder, Alan C ; Townsley, Dean M ; ATHANASSIADOU, THEMIS ; CHAMULAK, DAVID A ; Hawley, Wendy ; Jack, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-810dcfc8e4a68501aaf509983ab6acad1d4022c3d6c507a910782491339d7ff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ABUNDANCE</topic><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>BRIGHTNESS</topic><topic>CALCIUM 40</topic><topic>EQUILIBRIUM</topic><topic>Explosions</topic><topic>EXPLOSIVES</topic><topic>IRON 54</topic><topic>Mathematical analysis</topic><topic>METALLICITY</topic><topic>NUCLEAR REACTIONS</topic><topic>NUCLEOSYNTHESIS</topic><topic>ONE-DIMENSIONAL CALCULATIONS</topic><topic>Progenitors (astrophysics)</topic><topic>Sciences of the Universe</topic><topic>SILICON</topic><topic>SILICON 28</topic><topic>SPECTRA</topic><topic>SULFUR 32</topic><topic>SUPERNOVAE</topic><topic>Trends</topic><topic>WHITE DWARF STARS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De, Soma</creatorcontrib><creatorcontrib>Timmes, F X</creatorcontrib><creatorcontrib>Brown, Edward F</creatorcontrib><creatorcontrib>Calder, Alan C</creatorcontrib><creatorcontrib>Townsley, Dean M</creatorcontrib><creatorcontrib>ATHANASSIADOU, THEMIS</creatorcontrib><creatorcontrib>CHAMULAK, DAVID A</creatorcontrib><creatorcontrib>Hawley, Wendy</creatorcontrib><creatorcontrib>Jack, Dennis</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De, Soma</au><au>Timmes, F X</au><au>Brown, Edward F</au><au>Calder, Alan C</au><au>Townsley, Dean M</au><au>ATHANASSIADOU, THEMIS</au><au>CHAMULAK, DAVID A</au><au>Hawley, Wendy</au><au>Jack, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON SILICON GROUP ELEMENTS EJECTED BY SUPERNOVAE TYPE IA</atitle><jtitle>The Astrophysical journal</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>787</volume><issue>2</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>There is evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Y sub(e) at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre-explosive convective burning. To date, determining the makeup of the white dwarf progenitor has relied on indirect proxies, such as the average metallicity of the host stellar population. In this paper, we present analytical calculations supporting the idea that the electron fraction of the progenitor systematically influences the nucleosynthesis of silicon group ejecta in Type Ia supernovae. In particular, we suggest the abundances generated in quasi-nuclear statistical equilibrium are preserved during the subsequent freeze-out. This allows potential recovery of Y sub(e) at explosion from the abundances recovered from an observed spectra. We show that measurement of super(28)Si, super(32)S, super(40)Ca, and super(54)Fe abundances can be used to construct Y sub(e) in the silicon-rich regions of the supernovae. If these four abundances are determined exactly, they are sufficient to recover Y sub(e) to 6%. This is because these isotopes dominate the composition of silicon-rich material and iron-rich material in quasi-nuclear statistical equilibrium. Analytical analysis shows the super(28)Si abundance is insensitive to Y sub(e), the super(32)S abundance has a nearly linear trend with Y sub(e), and the super(40)Ca abundance has a nearly quadratic trend with Y sub(e). We verify these trends with post-processing of one-dimensional models and show that these trends are reflected in the model's synthetic spectra.</abstract><cop>United States</cop><pub>American Astronomical Society</pub><doi>10.1088/0004-637X/787/2/149</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9538-5948</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2014-06, Vol.787 (2), p.1-9 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_22356765 |
source | EZB Electronic Journals Library |
subjects | ABUNDANCE Astrophysics ASTROPHYSICS, COSMOLOGY AND ASTRONOMY BRIGHTNESS CALCIUM 40 EQUILIBRIUM Explosions EXPLOSIVES IRON 54 Mathematical analysis METALLICITY NUCLEAR REACTIONS NUCLEOSYNTHESIS ONE-DIMENSIONAL CALCULATIONS Progenitors (astrophysics) Sciences of the Universe SILICON SILICON 28 SPECTRA SULFUR 32 SUPERNOVAE Trends WHITE DWARF STARS |
title | ON SILICON GROUP ELEMENTS EJECTED BY SUPERNOVAE TYPE IA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20SILICON%20GROUP%20ELEMENTS%20EJECTED%20BY%20SUPERNOVAE%20TYPE%20IA&rft.jtitle=The%20Astrophysical%20journal&rft.au=De,%20Soma&rft.date=2014-06-01&rft.volume=787&rft.issue=2&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/787/2/149&rft_dat=%3Cproquest_osti_%3E1718958559%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a445t-810dcfc8e4a68501aaf509983ab6acad1d4022c3d6c507a910782491339d7ff73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709165569&rft_id=info:pmid/&rfr_iscdi=true |