Loading…

THE FIRST STARS: A LOW-MASS FORMATION MODE

We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densi...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2014-04, Vol.785 (1), p.1-18
Main Authors: Stacy, Athena, Bromm, Volker
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-50a09a23adfdc21e6832f7a837b38e03a4bfc4aec1be66df88dc0ac71015c9743
cites cdi_FETCH-LOGICAL-c385t-50a09a23adfdc21e6832f7a837b38e03a4bfc4aec1be66df88dc0ac71015c9743
container_end_page 18
container_issue 1
container_start_page 1
container_title The Astrophysical journal
container_volume 785
creator Stacy, Athena
Bromm, Volker
description We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densities. The simulations resolve scales as small as ~ 1 AU, corresponding to gas densities of 10 super(16) cm super(-3). Using sink particles to represent the growing protostars, we evolve the stellar system for the next 5000 yr. We find that this emerging stellar group accretes at an unusually low rate compared with minihalos which form at earlier times (z = 20-30), or with lower baryonic angular momentum. The stars in this unusual system will likely reach masses ranging from
doi_str_mv 10.1088/0004-637X/785/1/73
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22357137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718934548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-50a09a23adfdc21e6832f7a837b38e03a4bfc4aec1be66df88dc0ac71015c9743</originalsourceid><addsrcrecordid>eNqN0M9LwzAUwPEgCs7pP-Cp4EWE2ry8pEm9lf1wg83CWtFbyNIUK9s6m-7gf-_KxLOnx4MPD96XkFugj0CViiilPIxRvkdSiQgiiWdkAAJVyFHIczL4A5fkyvvPfmVJMiAPxWwSTOervAjyIl3lT0EaLLK3cJnmeTDNVsu0mGcvwTIbT67JRWU23t38ziF5nU6K0SxcZM_zUboILSrRhYIamhiGpqxKy8DFClkljUK5RuUoGr6uLDfOwtrFcVkpVVpqrAQKwiaS45Dcne42vqu1t3Xn7IdtdjtnO83Y8R9AeVT3J7Vvm6-D853e1t66zcbsXHPwGiSoBLng6h-UAldJLHvKTtS2jfetq_S-rbem_dZAdV9a9-V0H1IfS2vQEvEHKWtq5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701489678</pqid></control><display><type>article</type><title>THE FIRST STARS: A LOW-MASS FORMATION MODE</title><source>EZB Electronic Journals Library</source><creator>Stacy, Athena ; Bromm, Volker</creator><creatorcontrib>Stacy, Athena ; Bromm, Volker</creatorcontrib><description>We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densities. The simulations resolve scales as small as ~ 1 AU, corresponding to gas densities of 10 super(16) cm super(-3). Using sink particles to represent the growing protostars, we evolve the stellar system for the next 5000 yr. We find that this emerging stellar group accretes at an unusually low rate compared with minihalos which form at earlier times (z = 20-30), or with lower baryonic angular momentum. The stars in this unusual system will likely reach masses ranging from &lt;1 M sub([middot in circle]) to ~5 M sub([middot in circle]) by the end of their main-sequence lifetimes, placing them in the mass range for which stars will undergo an asymptotic giant branch (AGB) phase. Based upon the simulation, we predict the rare existence of Population III stars that have survived to the present day and have been enriched by mass overflow from a previous AGB companion.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/785/1/73</identifier><language>eng</language><publisher>United States</publisher><subject>ANGULAR MOMENTUM ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Asymptotic properties ; ASYMPTOTIC SOLUTIONS ; Collapse ; COMPARATIVE EVALUATIONS ; Computer simulation ; COMPUTERIZED SIMULATION ; COSMOLOGY ; DENSITY ; Enrichment ; Formations ; Initial conditions ; LIFETIME ; MASS ; PROTOSTARS ; STARS ; Stellar systems</subject><ispartof>The Astrophysical journal, 2014-04, Vol.785 (1), p.1-18</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-50a09a23adfdc21e6832f7a837b38e03a4bfc4aec1be66df88dc0ac71015c9743</citedby><cites>FETCH-LOGICAL-c385t-50a09a23adfdc21e6832f7a837b38e03a4bfc4aec1be66df88dc0ac71015c9743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22357137$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stacy, Athena</creatorcontrib><creatorcontrib>Bromm, Volker</creatorcontrib><title>THE FIRST STARS: A LOW-MASS FORMATION MODE</title><title>The Astrophysical journal</title><description>We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densities. The simulations resolve scales as small as ~ 1 AU, corresponding to gas densities of 10 super(16) cm super(-3). Using sink particles to represent the growing protostars, we evolve the stellar system for the next 5000 yr. We find that this emerging stellar group accretes at an unusually low rate compared with minihalos which form at earlier times (z = 20-30), or with lower baryonic angular momentum. The stars in this unusual system will likely reach masses ranging from &lt;1 M sub([middot in circle]) to ~5 M sub([middot in circle]) by the end of their main-sequence lifetimes, placing them in the mass range for which stars will undergo an asymptotic giant branch (AGB) phase. Based upon the simulation, we predict the rare existence of Population III stars that have survived to the present day and have been enriched by mass overflow from a previous AGB companion.</description><subject>ANGULAR MOMENTUM</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Asymptotic properties</subject><subject>ASYMPTOTIC SOLUTIONS</subject><subject>Collapse</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>COSMOLOGY</subject><subject>DENSITY</subject><subject>Enrichment</subject><subject>Formations</subject><subject>Initial conditions</subject><subject>LIFETIME</subject><subject>MASS</subject><subject>PROTOSTARS</subject><subject>STARS</subject><subject>Stellar systems</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0M9LwzAUwPEgCs7pP-Cp4EWE2ry8pEm9lf1wg83CWtFbyNIUK9s6m-7gf-_KxLOnx4MPD96XkFugj0CViiilPIxRvkdSiQgiiWdkAAJVyFHIczL4A5fkyvvPfmVJMiAPxWwSTOervAjyIl3lT0EaLLK3cJnmeTDNVsu0mGcvwTIbT67JRWU23t38ziF5nU6K0SxcZM_zUboILSrRhYIamhiGpqxKy8DFClkljUK5RuUoGr6uLDfOwtrFcVkpVVpqrAQKwiaS45Dcne42vqu1t3Xn7IdtdjtnO83Y8R9AeVT3J7Vvm6-D853e1t66zcbsXHPwGiSoBLng6h-UAldJLHvKTtS2jfetq_S-rbem_dZAdV9a9-V0H1IfS2vQEvEHKWtq5w</recordid><startdate>20140410</startdate><enddate>20140410</enddate><creator>Stacy, Athena</creator><creator>Bromm, Volker</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140410</creationdate><title>THE FIRST STARS: A LOW-MASS FORMATION MODE</title><author>Stacy, Athena ; Bromm, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-50a09a23adfdc21e6832f7a837b38e03a4bfc4aec1be66df88dc0ac71015c9743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ANGULAR MOMENTUM</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Asymptotic properties</topic><topic>ASYMPTOTIC SOLUTIONS</topic><topic>Collapse</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>COSMOLOGY</topic><topic>DENSITY</topic><topic>Enrichment</topic><topic>Formations</topic><topic>Initial conditions</topic><topic>LIFETIME</topic><topic>MASS</topic><topic>PROTOSTARS</topic><topic>STARS</topic><topic>Stellar systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stacy, Athena</creatorcontrib><creatorcontrib>Bromm, Volker</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stacy, Athena</au><au>Bromm, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE FIRST STARS: A LOW-MASS FORMATION MODE</atitle><jtitle>The Astrophysical journal</jtitle><date>2014-04-10</date><risdate>2014</risdate><volume>785</volume><issue>1</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densities. The simulations resolve scales as small as ~ 1 AU, corresponding to gas densities of 10 super(16) cm super(-3). Using sink particles to represent the growing protostars, we evolve the stellar system for the next 5000 yr. We find that this emerging stellar group accretes at an unusually low rate compared with minihalos which form at earlier times (z = 20-30), or with lower baryonic angular momentum. The stars in this unusual system will likely reach masses ranging from &lt;1 M sub([middot in circle]) to ~5 M sub([middot in circle]) by the end of their main-sequence lifetimes, placing them in the mass range for which stars will undergo an asymptotic giant branch (AGB) phase. Based upon the simulation, we predict the rare existence of Population III stars that have survived to the present day and have been enriched by mass overflow from a previous AGB companion.</abstract><cop>United States</cop><doi>10.1088/0004-637X/785/1/73</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2014-04, Vol.785 (1), p.1-18
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22357137
source EZB Electronic Journals Library
subjects ANGULAR MOMENTUM
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Asymptotic properties
ASYMPTOTIC SOLUTIONS
Collapse
COMPARATIVE EVALUATIONS
Computer simulation
COMPUTERIZED SIMULATION
COSMOLOGY
DENSITY
Enrichment
Formations
Initial conditions
LIFETIME
MASS
PROTOSTARS
STARS
Stellar systems
title THE FIRST STARS: A LOW-MASS FORMATION MODE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A17%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20FIRST%20STARS:%20A%20LOW-MASS%20FORMATION%20MODE&rft.jtitle=The%20Astrophysical%20journal&rft.au=Stacy,%20Athena&rft.date=2014-04-10&rft.volume=785&rft.issue=1&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/785/1/73&rft_dat=%3Cproquest_osti_%3E1718934548%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-50a09a23adfdc21e6832f7a837b38e03a4bfc4aec1be66df88dc0ac71015c9743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1701489678&rft_id=info:pmid/&rfr_iscdi=true