Loading…
THE FIRST STARS: A LOW-MASS FORMATION MODE
We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densi...
Saved in:
Published in: | The Astrophysical journal 2014-04, Vol.785 (1), p.1-18 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-50a09a23adfdc21e6832f7a837b38e03a4bfc4aec1be66df88dc0ac71015c9743 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-50a09a23adfdc21e6832f7a837b38e03a4bfc4aec1be66df88dc0ac71015c9743 |
container_end_page | 18 |
container_issue | 1 |
container_start_page | 1 |
container_title | The Astrophysical journal |
container_volume | 785 |
creator | Stacy, Athena Bromm, Volker |
description | We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densities. The simulations resolve scales as small as ~ 1 AU, corresponding to gas densities of 10 super(16) cm super(-3). Using sink particles to represent the growing protostars, we evolve the stellar system for the next 5000 yr. We find that this emerging stellar group accretes at an unusually low rate compared with minihalos which form at earlier times (z = 20-30), or with lower baryonic angular momentum. The stars in this unusual system will likely reach masses ranging from |
doi_str_mv | 10.1088/0004-637X/785/1/73 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22357137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718934548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-50a09a23adfdc21e6832f7a837b38e03a4bfc4aec1be66df88dc0ac71015c9743</originalsourceid><addsrcrecordid>eNqN0M9LwzAUwPEgCs7pP-Cp4EWE2ry8pEm9lf1wg83CWtFbyNIUK9s6m-7gf-_KxLOnx4MPD96XkFugj0CViiilPIxRvkdSiQgiiWdkAAJVyFHIczL4A5fkyvvPfmVJMiAPxWwSTOervAjyIl3lT0EaLLK3cJnmeTDNVsu0mGcvwTIbT67JRWU23t38ziF5nU6K0SxcZM_zUboILSrRhYIamhiGpqxKy8DFClkljUK5RuUoGr6uLDfOwtrFcVkpVVpqrAQKwiaS45Dcne42vqu1t3Xn7IdtdjtnO83Y8R9AeVT3J7Vvm6-D853e1t66zcbsXHPwGiSoBLng6h-UAldJLHvKTtS2jfetq_S-rbem_dZAdV9a9-V0H1IfS2vQEvEHKWtq5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701489678</pqid></control><display><type>article</type><title>THE FIRST STARS: A LOW-MASS FORMATION MODE</title><source>EZB Electronic Journals Library</source><creator>Stacy, Athena ; Bromm, Volker</creator><creatorcontrib>Stacy, Athena ; Bromm, Volker</creatorcontrib><description>We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densities. The simulations resolve scales as small as ~ 1 AU, corresponding to gas densities of 10 super(16) cm super(-3). Using sink particles to represent the growing protostars, we evolve the stellar system for the next 5000 yr. We find that this emerging stellar group accretes at an unusually low rate compared with minihalos which form at earlier times (z = 20-30), or with lower baryonic angular momentum. The stars in this unusual system will likely reach masses ranging from <1 M sub([middot in circle]) to ~5 M sub([middot in circle]) by the end of their main-sequence lifetimes, placing them in the mass range for which stars will undergo an asymptotic giant branch (AGB) phase. Based upon the simulation, we predict the rare existence of Population III stars that have survived to the present day and have been enriched by mass overflow from a previous AGB companion.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/785/1/73</identifier><language>eng</language><publisher>United States</publisher><subject>ANGULAR MOMENTUM ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Asymptotic properties ; ASYMPTOTIC SOLUTIONS ; Collapse ; COMPARATIVE EVALUATIONS ; Computer simulation ; COMPUTERIZED SIMULATION ; COSMOLOGY ; DENSITY ; Enrichment ; Formations ; Initial conditions ; LIFETIME ; MASS ; PROTOSTARS ; STARS ; Stellar systems</subject><ispartof>The Astrophysical journal, 2014-04, Vol.785 (1), p.1-18</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-50a09a23adfdc21e6832f7a837b38e03a4bfc4aec1be66df88dc0ac71015c9743</citedby><cites>FETCH-LOGICAL-c385t-50a09a23adfdc21e6832f7a837b38e03a4bfc4aec1be66df88dc0ac71015c9743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22357137$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stacy, Athena</creatorcontrib><creatorcontrib>Bromm, Volker</creatorcontrib><title>THE FIRST STARS: A LOW-MASS FORMATION MODE</title><title>The Astrophysical journal</title><description>We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densities. The simulations resolve scales as small as ~ 1 AU, corresponding to gas densities of 10 super(16) cm super(-3). Using sink particles to represent the growing protostars, we evolve the stellar system for the next 5000 yr. We find that this emerging stellar group accretes at an unusually low rate compared with minihalos which form at earlier times (z = 20-30), or with lower baryonic angular momentum. The stars in this unusual system will likely reach masses ranging from <1 M sub([middot in circle]) to ~5 M sub([middot in circle]) by the end of their main-sequence lifetimes, placing them in the mass range for which stars will undergo an asymptotic giant branch (AGB) phase. Based upon the simulation, we predict the rare existence of Population III stars that have survived to the present day and have been enriched by mass overflow from a previous AGB companion.</description><subject>ANGULAR MOMENTUM</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Asymptotic properties</subject><subject>ASYMPTOTIC SOLUTIONS</subject><subject>Collapse</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>COSMOLOGY</subject><subject>DENSITY</subject><subject>Enrichment</subject><subject>Formations</subject><subject>Initial conditions</subject><subject>LIFETIME</subject><subject>MASS</subject><subject>PROTOSTARS</subject><subject>STARS</subject><subject>Stellar systems</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0M9LwzAUwPEgCs7pP-Cp4EWE2ry8pEm9lf1wg83CWtFbyNIUK9s6m-7gf-_KxLOnx4MPD96XkFugj0CViiilPIxRvkdSiQgiiWdkAAJVyFHIczL4A5fkyvvPfmVJMiAPxWwSTOervAjyIl3lT0EaLLK3cJnmeTDNVsu0mGcvwTIbT67JRWU23t38ziF5nU6K0SxcZM_zUboILSrRhYIamhiGpqxKy8DFClkljUK5RuUoGr6uLDfOwtrFcVkpVVpqrAQKwiaS45Dcne42vqu1t3Xn7IdtdjtnO83Y8R9AeVT3J7Vvm6-D853e1t66zcbsXHPwGiSoBLng6h-UAldJLHvKTtS2jfetq_S-rbem_dZAdV9a9-V0H1IfS2vQEvEHKWtq5w</recordid><startdate>20140410</startdate><enddate>20140410</enddate><creator>Stacy, Athena</creator><creator>Bromm, Volker</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140410</creationdate><title>THE FIRST STARS: A LOW-MASS FORMATION MODE</title><author>Stacy, Athena ; Bromm, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-50a09a23adfdc21e6832f7a837b38e03a4bfc4aec1be66df88dc0ac71015c9743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ANGULAR MOMENTUM</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Asymptotic properties</topic><topic>ASYMPTOTIC SOLUTIONS</topic><topic>Collapse</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>COSMOLOGY</topic><topic>DENSITY</topic><topic>Enrichment</topic><topic>Formations</topic><topic>Initial conditions</topic><topic>LIFETIME</topic><topic>MASS</topic><topic>PROTOSTARS</topic><topic>STARS</topic><topic>Stellar systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stacy, Athena</creatorcontrib><creatorcontrib>Bromm, Volker</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stacy, Athena</au><au>Bromm, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE FIRST STARS: A LOW-MASS FORMATION MODE</atitle><jtitle>The Astrophysical journal</jtitle><date>2014-04-10</date><risdate>2014</risdate><volume>785</volume><issue>1</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densities. The simulations resolve scales as small as ~ 1 AU, corresponding to gas densities of 10 super(16) cm super(-3). Using sink particles to represent the growing protostars, we evolve the stellar system for the next 5000 yr. We find that this emerging stellar group accretes at an unusually low rate compared with minihalos which form at earlier times (z = 20-30), or with lower baryonic angular momentum. The stars in this unusual system will likely reach masses ranging from <1 M sub([middot in circle]) to ~5 M sub([middot in circle]) by the end of their main-sequence lifetimes, placing them in the mass range for which stars will undergo an asymptotic giant branch (AGB) phase. Based upon the simulation, we predict the rare existence of Population III stars that have survived to the present day and have been enriched by mass overflow from a previous AGB companion.</abstract><cop>United States</cop><doi>10.1088/0004-637X/785/1/73</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2014-04, Vol.785 (1), p.1-18 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_22357137 |
source | EZB Electronic Journals Library |
subjects | ANGULAR MOMENTUM ASTROPHYSICS, COSMOLOGY AND ASTRONOMY Asymptotic properties ASYMPTOTIC SOLUTIONS Collapse COMPARATIVE EVALUATIONS Computer simulation COMPUTERIZED SIMULATION COSMOLOGY DENSITY Enrichment Formations Initial conditions LIFETIME MASS PROTOSTARS STARS Stellar systems |
title | THE FIRST STARS: A LOW-MASS FORMATION MODE |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A17%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20FIRST%20STARS:%20A%20LOW-MASS%20FORMATION%20MODE&rft.jtitle=The%20Astrophysical%20journal&rft.au=Stacy,%20Athena&rft.date=2014-04-10&rft.volume=785&rft.issue=1&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/785/1/73&rft_dat=%3Cproquest_osti_%3E1718934548%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-50a09a23adfdc21e6832f7a837b38e03a4bfc4aec1be66df88dc0ac71015c9743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1701489678&rft_id=info:pmid/&rfr_iscdi=true |