Loading…

FORMATION OF MAGNETIZED PRESTELLAR CORES WITH AMBIPOLAR DIFFUSION AND TURBULENCE

We investigate the roles of magnetic fields and ambipolar diffusion during prestellar core formation in turbulent giant molecular clouds, using three-dimensional numerical simulations. Our simulations focus on the shocked layer produced by a converging large-scale flow and survey varying ionization...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2014-04, Vol.785 (1), p.1-20
Main Authors: Chen, Che-Yu, Ostriker, Eve C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-93d1f1f7425be1ab6fc90806fea4e0d742ed486d62c89ef69a0faed7a49adcf83
cites cdi_FETCH-LOGICAL-c385t-93d1f1f7425be1ab6fc90806fea4e0d742ed486d62c89ef69a0faed7a49adcf83
container_end_page 20
container_issue 1
container_start_page 1
container_title The Astrophysical journal
container_volume 785
creator Chen, Che-Yu
Ostriker, Eve C
description We investigate the roles of magnetic fields and ambipolar diffusion during prestellar core formation in turbulent giant molecular clouds, using three-dimensional numerical simulations. Our simulations focus on the shocked layer produced by a converging large-scale flow and survey varying ionization and the angle between the upstream flow and magnetic field. We also include ideal magnetohydrodynamic (MHD) and hydrodynamic models. From our simulations, we identify hundreds of self-gravitating cores that form within 1 Myr, with masses M ~ 0.04-2.5 M sub([middot in circle]) and sizes L ~ 0.015-0.07 pc, consistent with observations of the peak of the core mass function. Median values are M = 0.47 M sub([middot in circle]) and L = 0.03 pc. Core masses and sizes do not depend on either the ionization or upstream magnetic field direction. In contrast, the mass-to-flux ratio does increase with lower ionization, from twice to four times the critical value. The higher mass-to-flux ratio for low ionization is the result of enhanced transient ambipolar diffusion when the shocked layer first forms. However, ambipolar diffusion is not necessary to form low-mass supercritical cores. For ideal MHD, we find similar masses to other cases. These masses are one to two orders of magnitude lower than the value M sub(mag,sph) = 0.007B super(3)/(G super(3/2)[rho] super(2)) that defines a magnetically supercritical sphere under post-shock ambient conditions. This discrepancy is the result of anisotropic contraction along field lines, which is clearly evident in both ideal MHD and diffusive simulations. We interpret our numerical findings using a simple scaling argument that suggests that gravitationally critical core masses will depend on the sound speed and mean turbulent pressure in a cloud, regardless of magnetic effects.
doi_str_mv 10.1088/0004-637X/785/1/69
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22357152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718917711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-93d1f1f7425be1ab6fc90806fea4e0d742ed486d62c89ef69a0faed7a49adcf83</originalsourceid><addsrcrecordid>eNqNkcFPgzAUxhujiXP6D3gi8eIFaaHQ9sg22EgYLAyi8dJ0pY2YbUzKDv73QmY8e3rvffm9l7zvA-ARwRcEKXUghNgOPPLmEOo7yAnYFZgg36M29nxyDSZ_wC24M-ZzHF3GJmAT58U6LJM8s_LYWofLLCqT92hhbYpoW0ZpGhbWPB966zUpV1a4niWbfBQXSRxX23EvzBZWWRWzKo2yeXQPbrTYG_XwW6egiqNyvrLTfJnMw9SWHvV7m3k10kgT7Po7hcQu0JJBCgOtBFawHnRVYxrUgSspUzpgAmqhaiIwE7XU1JuCp8vd1vQNN7LplfyQ7fGoZM9dd_ga-e5APV-oU9d-nZXp-aExUu334qjas-GIIMoQIQj9A4UIU0IxHlD3gsquNaZTmp-65iC6b44gH_Pgo798tJsPeXDEA-b9ANe_dkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701487844</pqid></control><display><type>article</type><title>FORMATION OF MAGNETIZED PRESTELLAR CORES WITH AMBIPOLAR DIFFUSION AND TURBULENCE</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Chen, Che-Yu ; Ostriker, Eve C</creator><creatorcontrib>Chen, Che-Yu ; Ostriker, Eve C</creatorcontrib><description>We investigate the roles of magnetic fields and ambipolar diffusion during prestellar core formation in turbulent giant molecular clouds, using three-dimensional numerical simulations. Our simulations focus on the shocked layer produced by a converging large-scale flow and survey varying ionization and the angle between the upstream flow and magnetic field. We also include ideal magnetohydrodynamic (MHD) and hydrodynamic models. From our simulations, we identify hundreds of self-gravitating cores that form within 1 Myr, with masses M ~ 0.04-2.5 M sub([middot in circle]) and sizes L ~ 0.015-0.07 pc, consistent with observations of the peak of the core mass function. Median values are M = 0.47 M sub([middot in circle]) and L = 0.03 pc. Core masses and sizes do not depend on either the ionization or upstream magnetic field direction. In contrast, the mass-to-flux ratio does increase with lower ionization, from twice to four times the critical value. The higher mass-to-flux ratio for low ionization is the result of enhanced transient ambipolar diffusion when the shocked layer first forms. However, ambipolar diffusion is not necessary to form low-mass supercritical cores. For ideal MHD, we find similar masses to other cases. These masses are one to two orders of magnitude lower than the value M sub(mag,sph) = 0.007B super(3)/(G super(3/2)[rho] super(2)) that defines a magnetically supercritical sphere under post-shock ambient conditions. This discrepancy is the result of anisotropic contraction along field lines, which is clearly evident in both ideal MHD and diffusive simulations. We interpret our numerical findings using a simple scaling argument that suggests that gravitationally critical core masses will depend on the sound speed and mean turbulent pressure in a cloud, regardless of magnetic effects.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/785/1/69</identifier><language>eng</language><publisher>United States</publisher><subject>AMBIPOLAR DIFFUSION ; ANISOTROPY ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Computational fluid dynamics ; Computer simulation ; COMPUTERIZED SIMULATION ; HYDRODYNAMIC MODEL ; IONIZATION ; LAYERS ; MAGNETIC FIELDS ; MAGNETOHYDRODYNAMICS ; MASS ; Mathematical models ; SOUND WAVES ; STAR ACCRETION ; STARS ; THREE-DIMENSIONAL CALCULATIONS ; TRANSIENTS ; TURBULENCE ; Turbulent flow ; VELOCITY</subject><ispartof>The Astrophysical journal, 2014-04, Vol.785 (1), p.1-20</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-93d1f1f7425be1ab6fc90806fea4e0d742ed486d62c89ef69a0faed7a49adcf83</citedby><cites>FETCH-LOGICAL-c385t-93d1f1f7425be1ab6fc90806fea4e0d742ed486d62c89ef69a0faed7a49adcf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22357152$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Che-Yu</creatorcontrib><creatorcontrib>Ostriker, Eve C</creatorcontrib><title>FORMATION OF MAGNETIZED PRESTELLAR CORES WITH AMBIPOLAR DIFFUSION AND TURBULENCE</title><title>The Astrophysical journal</title><description>We investigate the roles of magnetic fields and ambipolar diffusion during prestellar core formation in turbulent giant molecular clouds, using three-dimensional numerical simulations. Our simulations focus on the shocked layer produced by a converging large-scale flow and survey varying ionization and the angle between the upstream flow and magnetic field. We also include ideal magnetohydrodynamic (MHD) and hydrodynamic models. From our simulations, we identify hundreds of self-gravitating cores that form within 1 Myr, with masses M ~ 0.04-2.5 M sub([middot in circle]) and sizes L ~ 0.015-0.07 pc, consistent with observations of the peak of the core mass function. Median values are M = 0.47 M sub([middot in circle]) and L = 0.03 pc. Core masses and sizes do not depend on either the ionization or upstream magnetic field direction. In contrast, the mass-to-flux ratio does increase with lower ionization, from twice to four times the critical value. The higher mass-to-flux ratio for low ionization is the result of enhanced transient ambipolar diffusion when the shocked layer first forms. However, ambipolar diffusion is not necessary to form low-mass supercritical cores. For ideal MHD, we find similar masses to other cases. These masses are one to two orders of magnitude lower than the value M sub(mag,sph) = 0.007B super(3)/(G super(3/2)[rho] super(2)) that defines a magnetically supercritical sphere under post-shock ambient conditions. This discrepancy is the result of anisotropic contraction along field lines, which is clearly evident in both ideal MHD and diffusive simulations. We interpret our numerical findings using a simple scaling argument that suggests that gravitationally critical core masses will depend on the sound speed and mean turbulent pressure in a cloud, regardless of magnetic effects.</description><subject>AMBIPOLAR DIFFUSION</subject><subject>ANISOTROPY</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>HYDRODYNAMIC MODEL</subject><subject>IONIZATION</subject><subject>LAYERS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>MASS</subject><subject>Mathematical models</subject><subject>SOUND WAVES</subject><subject>STAR ACCRETION</subject><subject>STARS</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><subject>TRANSIENTS</subject><subject>TURBULENCE</subject><subject>Turbulent flow</subject><subject>VELOCITY</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkcFPgzAUxhujiXP6D3gi8eIFaaHQ9sg22EgYLAyi8dJ0pY2YbUzKDv73QmY8e3rvffm9l7zvA-ARwRcEKXUghNgOPPLmEOo7yAnYFZgg36M29nxyDSZ_wC24M-ZzHF3GJmAT58U6LJM8s_LYWofLLCqT92hhbYpoW0ZpGhbWPB966zUpV1a4niWbfBQXSRxX23EvzBZWWRWzKo2yeXQPbrTYG_XwW6egiqNyvrLTfJnMw9SWHvV7m3k10kgT7Po7hcQu0JJBCgOtBFawHnRVYxrUgSspUzpgAmqhaiIwE7XU1JuCp8vd1vQNN7LplfyQ7fGoZM9dd_ga-e5APV-oU9d-nZXp-aExUu334qjas-GIIMoQIQj9A4UIU0IxHlD3gsquNaZTmp-65iC6b44gH_Pgo798tJsPeXDEA-b9ANe_dkA</recordid><startdate>20140410</startdate><enddate>20140410</enddate><creator>Chen, Che-Yu</creator><creator>Ostriker, Eve C</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140410</creationdate><title>FORMATION OF MAGNETIZED PRESTELLAR CORES WITH AMBIPOLAR DIFFUSION AND TURBULENCE</title><author>Chen, Che-Yu ; Ostriker, Eve C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-93d1f1f7425be1ab6fc90806fea4e0d742ed486d62c89ef69a0faed7a49adcf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AMBIPOLAR DIFFUSION</topic><topic>ANISOTROPY</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>HYDRODYNAMIC MODEL</topic><topic>IONIZATION</topic><topic>LAYERS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>MASS</topic><topic>Mathematical models</topic><topic>SOUND WAVES</topic><topic>STAR ACCRETION</topic><topic>STARS</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><topic>TRANSIENTS</topic><topic>TURBULENCE</topic><topic>Turbulent flow</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Che-Yu</creatorcontrib><creatorcontrib>Ostriker, Eve C</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Che-Yu</au><au>Ostriker, Eve C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FORMATION OF MAGNETIZED PRESTELLAR CORES WITH AMBIPOLAR DIFFUSION AND TURBULENCE</atitle><jtitle>The Astrophysical journal</jtitle><date>2014-04-10</date><risdate>2014</risdate><volume>785</volume><issue>1</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We investigate the roles of magnetic fields and ambipolar diffusion during prestellar core formation in turbulent giant molecular clouds, using three-dimensional numerical simulations. Our simulations focus on the shocked layer produced by a converging large-scale flow and survey varying ionization and the angle between the upstream flow and magnetic field. We also include ideal magnetohydrodynamic (MHD) and hydrodynamic models. From our simulations, we identify hundreds of self-gravitating cores that form within 1 Myr, with masses M ~ 0.04-2.5 M sub([middot in circle]) and sizes L ~ 0.015-0.07 pc, consistent with observations of the peak of the core mass function. Median values are M = 0.47 M sub([middot in circle]) and L = 0.03 pc. Core masses and sizes do not depend on either the ionization or upstream magnetic field direction. In contrast, the mass-to-flux ratio does increase with lower ionization, from twice to four times the critical value. The higher mass-to-flux ratio for low ionization is the result of enhanced transient ambipolar diffusion when the shocked layer first forms. However, ambipolar diffusion is not necessary to form low-mass supercritical cores. For ideal MHD, we find similar masses to other cases. These masses are one to two orders of magnitude lower than the value M sub(mag,sph) = 0.007B super(3)/(G super(3/2)[rho] super(2)) that defines a magnetically supercritical sphere under post-shock ambient conditions. This discrepancy is the result of anisotropic contraction along field lines, which is clearly evident in both ideal MHD and diffusive simulations. We interpret our numerical findings using a simple scaling argument that suggests that gravitationally critical core masses will depend on the sound speed and mean turbulent pressure in a cloud, regardless of magnetic effects.</abstract><cop>United States</cop><doi>10.1088/0004-637X/785/1/69</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2014-04, Vol.785 (1), p.1-20
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22357152
source Free E-Journal (出版社公開部分のみ)
subjects AMBIPOLAR DIFFUSION
ANISOTROPY
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Computational fluid dynamics
Computer simulation
COMPUTERIZED SIMULATION
HYDRODYNAMIC MODEL
IONIZATION
LAYERS
MAGNETIC FIELDS
MAGNETOHYDRODYNAMICS
MASS
Mathematical models
SOUND WAVES
STAR ACCRETION
STARS
THREE-DIMENSIONAL CALCULATIONS
TRANSIENTS
TURBULENCE
Turbulent flow
VELOCITY
title FORMATION OF MAGNETIZED PRESTELLAR CORES WITH AMBIPOLAR DIFFUSION AND TURBULENCE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FORMATION%20OF%20MAGNETIZED%20PRESTELLAR%20CORES%20WITH%20AMBIPOLAR%20DIFFUSION%20AND%20TURBULENCE&rft.jtitle=The%20Astrophysical%20journal&rft.au=Chen,%20Che-Yu&rft.date=2014-04-10&rft.volume=785&rft.issue=1&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/785/1/69&rft_dat=%3Cproquest_osti_%3E1718917711%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-93d1f1f7425be1ab6fc90806fea4e0d742ed486d62c89ef69a0faed7a49adcf83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1701487844&rft_id=info:pmid/&rfr_iscdi=true