Loading…
FORMATION OF MAGNETIZED PRESTELLAR CORES WITH AMBIPOLAR DIFFUSION AND TURBULENCE
We investigate the roles of magnetic fields and ambipolar diffusion during prestellar core formation in turbulent giant molecular clouds, using three-dimensional numerical simulations. Our simulations focus on the shocked layer produced by a converging large-scale flow and survey varying ionization...
Saved in:
Published in: | The Astrophysical journal 2014-04, Vol.785 (1), p.1-20 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-93d1f1f7425be1ab6fc90806fea4e0d742ed486d62c89ef69a0faed7a49adcf83 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-93d1f1f7425be1ab6fc90806fea4e0d742ed486d62c89ef69a0faed7a49adcf83 |
container_end_page | 20 |
container_issue | 1 |
container_start_page | 1 |
container_title | The Astrophysical journal |
container_volume | 785 |
creator | Chen, Che-Yu Ostriker, Eve C |
description | We investigate the roles of magnetic fields and ambipolar diffusion during prestellar core formation in turbulent giant molecular clouds, using three-dimensional numerical simulations. Our simulations focus on the shocked layer produced by a converging large-scale flow and survey varying ionization and the angle between the upstream flow and magnetic field. We also include ideal magnetohydrodynamic (MHD) and hydrodynamic models. From our simulations, we identify hundreds of self-gravitating cores that form within 1 Myr, with masses M ~ 0.04-2.5 M sub([middot in circle]) and sizes L ~ 0.015-0.07 pc, consistent with observations of the peak of the core mass function. Median values are M = 0.47 M sub([middot in circle]) and L = 0.03 pc. Core masses and sizes do not depend on either the ionization or upstream magnetic field direction. In contrast, the mass-to-flux ratio does increase with lower ionization, from twice to four times the critical value. The higher mass-to-flux ratio for low ionization is the result of enhanced transient ambipolar diffusion when the shocked layer first forms. However, ambipolar diffusion is not necessary to form low-mass supercritical cores. For ideal MHD, we find similar masses to other cases. These masses are one to two orders of magnitude lower than the value M sub(mag,sph) = 0.007B super(3)/(G super(3/2)[rho] super(2)) that defines a magnetically supercritical sphere under post-shock ambient conditions. This discrepancy is the result of anisotropic contraction along field lines, which is clearly evident in both ideal MHD and diffusive simulations. We interpret our numerical findings using a simple scaling argument that suggests that gravitationally critical core masses will depend on the sound speed and mean turbulent pressure in a cloud, regardless of magnetic effects. |
doi_str_mv | 10.1088/0004-637X/785/1/69 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22357152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718917711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-93d1f1f7425be1ab6fc90806fea4e0d742ed486d62c89ef69a0faed7a49adcf83</originalsourceid><addsrcrecordid>eNqNkcFPgzAUxhujiXP6D3gi8eIFaaHQ9sg22EgYLAyi8dJ0pY2YbUzKDv73QmY8e3rvffm9l7zvA-ARwRcEKXUghNgOPPLmEOo7yAnYFZgg36M29nxyDSZ_wC24M-ZzHF3GJmAT58U6LJM8s_LYWofLLCqT92hhbYpoW0ZpGhbWPB966zUpV1a4niWbfBQXSRxX23EvzBZWWRWzKo2yeXQPbrTYG_XwW6egiqNyvrLTfJnMw9SWHvV7m3k10kgT7Po7hcQu0JJBCgOtBFawHnRVYxrUgSspUzpgAmqhaiIwE7XU1JuCp8vd1vQNN7LplfyQ7fGoZM9dd_ga-e5APV-oU9d-nZXp-aExUu334qjas-GIIMoQIQj9A4UIU0IxHlD3gsquNaZTmp-65iC6b44gH_Pgo798tJsPeXDEA-b9ANe_dkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701487844</pqid></control><display><type>article</type><title>FORMATION OF MAGNETIZED PRESTELLAR CORES WITH AMBIPOLAR DIFFUSION AND TURBULENCE</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Chen, Che-Yu ; Ostriker, Eve C</creator><creatorcontrib>Chen, Che-Yu ; Ostriker, Eve C</creatorcontrib><description>We investigate the roles of magnetic fields and ambipolar diffusion during prestellar core formation in turbulent giant molecular clouds, using three-dimensional numerical simulations. Our simulations focus on the shocked layer produced by a converging large-scale flow and survey varying ionization and the angle between the upstream flow and magnetic field. We also include ideal magnetohydrodynamic (MHD) and hydrodynamic models. From our simulations, we identify hundreds of self-gravitating cores that form within 1 Myr, with masses M ~ 0.04-2.5 M sub([middot in circle]) and sizes L ~ 0.015-0.07 pc, consistent with observations of the peak of the core mass function. Median values are M = 0.47 M sub([middot in circle]) and L = 0.03 pc. Core masses and sizes do not depend on either the ionization or upstream magnetic field direction. In contrast, the mass-to-flux ratio does increase with lower ionization, from twice to four times the critical value. The higher mass-to-flux ratio for low ionization is the result of enhanced transient ambipolar diffusion when the shocked layer first forms. However, ambipolar diffusion is not necessary to form low-mass supercritical cores. For ideal MHD, we find similar masses to other cases. These masses are one to two orders of magnitude lower than the value M sub(mag,sph) = 0.007B super(3)/(G super(3/2)[rho] super(2)) that defines a magnetically supercritical sphere under post-shock ambient conditions. This discrepancy is the result of anisotropic contraction along field lines, which is clearly evident in both ideal MHD and diffusive simulations. We interpret our numerical findings using a simple scaling argument that suggests that gravitationally critical core masses will depend on the sound speed and mean turbulent pressure in a cloud, regardless of magnetic effects.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/785/1/69</identifier><language>eng</language><publisher>United States</publisher><subject>AMBIPOLAR DIFFUSION ; ANISOTROPY ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Computational fluid dynamics ; Computer simulation ; COMPUTERIZED SIMULATION ; HYDRODYNAMIC MODEL ; IONIZATION ; LAYERS ; MAGNETIC FIELDS ; MAGNETOHYDRODYNAMICS ; MASS ; Mathematical models ; SOUND WAVES ; STAR ACCRETION ; STARS ; THREE-DIMENSIONAL CALCULATIONS ; TRANSIENTS ; TURBULENCE ; Turbulent flow ; VELOCITY</subject><ispartof>The Astrophysical journal, 2014-04, Vol.785 (1), p.1-20</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-93d1f1f7425be1ab6fc90806fea4e0d742ed486d62c89ef69a0faed7a49adcf83</citedby><cites>FETCH-LOGICAL-c385t-93d1f1f7425be1ab6fc90806fea4e0d742ed486d62c89ef69a0faed7a49adcf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22357152$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Che-Yu</creatorcontrib><creatorcontrib>Ostriker, Eve C</creatorcontrib><title>FORMATION OF MAGNETIZED PRESTELLAR CORES WITH AMBIPOLAR DIFFUSION AND TURBULENCE</title><title>The Astrophysical journal</title><description>We investigate the roles of magnetic fields and ambipolar diffusion during prestellar core formation in turbulent giant molecular clouds, using three-dimensional numerical simulations. Our simulations focus on the shocked layer produced by a converging large-scale flow and survey varying ionization and the angle between the upstream flow and magnetic field. We also include ideal magnetohydrodynamic (MHD) and hydrodynamic models. From our simulations, we identify hundreds of self-gravitating cores that form within 1 Myr, with masses M ~ 0.04-2.5 M sub([middot in circle]) and sizes L ~ 0.015-0.07 pc, consistent with observations of the peak of the core mass function. Median values are M = 0.47 M sub([middot in circle]) and L = 0.03 pc. Core masses and sizes do not depend on either the ionization or upstream magnetic field direction. In contrast, the mass-to-flux ratio does increase with lower ionization, from twice to four times the critical value. The higher mass-to-flux ratio for low ionization is the result of enhanced transient ambipolar diffusion when the shocked layer first forms. However, ambipolar diffusion is not necessary to form low-mass supercritical cores. For ideal MHD, we find similar masses to other cases. These masses are one to two orders of magnitude lower than the value M sub(mag,sph) = 0.007B super(3)/(G super(3/2)[rho] super(2)) that defines a magnetically supercritical sphere under post-shock ambient conditions. This discrepancy is the result of anisotropic contraction along field lines, which is clearly evident in both ideal MHD and diffusive simulations. We interpret our numerical findings using a simple scaling argument that suggests that gravitationally critical core masses will depend on the sound speed and mean turbulent pressure in a cloud, regardless of magnetic effects.</description><subject>AMBIPOLAR DIFFUSION</subject><subject>ANISOTROPY</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>HYDRODYNAMIC MODEL</subject><subject>IONIZATION</subject><subject>LAYERS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>MASS</subject><subject>Mathematical models</subject><subject>SOUND WAVES</subject><subject>STAR ACCRETION</subject><subject>STARS</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><subject>TRANSIENTS</subject><subject>TURBULENCE</subject><subject>Turbulent flow</subject><subject>VELOCITY</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkcFPgzAUxhujiXP6D3gi8eIFaaHQ9sg22EgYLAyi8dJ0pY2YbUzKDv73QmY8e3rvffm9l7zvA-ARwRcEKXUghNgOPPLmEOo7yAnYFZgg36M29nxyDSZ_wC24M-ZzHF3GJmAT58U6LJM8s_LYWofLLCqT92hhbYpoW0ZpGhbWPB966zUpV1a4niWbfBQXSRxX23EvzBZWWRWzKo2yeXQPbrTYG_XwW6egiqNyvrLTfJnMw9SWHvV7m3k10kgT7Po7hcQu0JJBCgOtBFawHnRVYxrUgSspUzpgAmqhaiIwE7XU1JuCp8vd1vQNN7LplfyQ7fGoZM9dd_ga-e5APV-oU9d-nZXp-aExUu334qjas-GIIMoQIQj9A4UIU0IxHlD3gsquNaZTmp-65iC6b44gH_Pgo798tJsPeXDEA-b9ANe_dkA</recordid><startdate>20140410</startdate><enddate>20140410</enddate><creator>Chen, Che-Yu</creator><creator>Ostriker, Eve C</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140410</creationdate><title>FORMATION OF MAGNETIZED PRESTELLAR CORES WITH AMBIPOLAR DIFFUSION AND TURBULENCE</title><author>Chen, Che-Yu ; Ostriker, Eve C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-93d1f1f7425be1ab6fc90806fea4e0d742ed486d62c89ef69a0faed7a49adcf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AMBIPOLAR DIFFUSION</topic><topic>ANISOTROPY</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>HYDRODYNAMIC MODEL</topic><topic>IONIZATION</topic><topic>LAYERS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>MASS</topic><topic>Mathematical models</topic><topic>SOUND WAVES</topic><topic>STAR ACCRETION</topic><topic>STARS</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><topic>TRANSIENTS</topic><topic>TURBULENCE</topic><topic>Turbulent flow</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Che-Yu</creatorcontrib><creatorcontrib>Ostriker, Eve C</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Che-Yu</au><au>Ostriker, Eve C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FORMATION OF MAGNETIZED PRESTELLAR CORES WITH AMBIPOLAR DIFFUSION AND TURBULENCE</atitle><jtitle>The Astrophysical journal</jtitle><date>2014-04-10</date><risdate>2014</risdate><volume>785</volume><issue>1</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We investigate the roles of magnetic fields and ambipolar diffusion during prestellar core formation in turbulent giant molecular clouds, using three-dimensional numerical simulations. Our simulations focus on the shocked layer produced by a converging large-scale flow and survey varying ionization and the angle between the upstream flow and magnetic field. We also include ideal magnetohydrodynamic (MHD) and hydrodynamic models. From our simulations, we identify hundreds of self-gravitating cores that form within 1 Myr, with masses M ~ 0.04-2.5 M sub([middot in circle]) and sizes L ~ 0.015-0.07 pc, consistent with observations of the peak of the core mass function. Median values are M = 0.47 M sub([middot in circle]) and L = 0.03 pc. Core masses and sizes do not depend on either the ionization or upstream magnetic field direction. In contrast, the mass-to-flux ratio does increase with lower ionization, from twice to four times the critical value. The higher mass-to-flux ratio for low ionization is the result of enhanced transient ambipolar diffusion when the shocked layer first forms. However, ambipolar diffusion is not necessary to form low-mass supercritical cores. For ideal MHD, we find similar masses to other cases. These masses are one to two orders of magnitude lower than the value M sub(mag,sph) = 0.007B super(3)/(G super(3/2)[rho] super(2)) that defines a magnetically supercritical sphere under post-shock ambient conditions. This discrepancy is the result of anisotropic contraction along field lines, which is clearly evident in both ideal MHD and diffusive simulations. We interpret our numerical findings using a simple scaling argument that suggests that gravitationally critical core masses will depend on the sound speed and mean turbulent pressure in a cloud, regardless of magnetic effects.</abstract><cop>United States</cop><doi>10.1088/0004-637X/785/1/69</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2014-04, Vol.785 (1), p.1-20 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_22357152 |
source | Free E-Journal (出版社公開部分のみ) |
subjects | AMBIPOLAR DIFFUSION ANISOTROPY ASTROPHYSICS, COSMOLOGY AND ASTRONOMY Computational fluid dynamics Computer simulation COMPUTERIZED SIMULATION HYDRODYNAMIC MODEL IONIZATION LAYERS MAGNETIC FIELDS MAGNETOHYDRODYNAMICS MASS Mathematical models SOUND WAVES STAR ACCRETION STARS THREE-DIMENSIONAL CALCULATIONS TRANSIENTS TURBULENCE Turbulent flow VELOCITY |
title | FORMATION OF MAGNETIZED PRESTELLAR CORES WITH AMBIPOLAR DIFFUSION AND TURBULENCE |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FORMATION%20OF%20MAGNETIZED%20PRESTELLAR%20CORES%20WITH%20AMBIPOLAR%20DIFFUSION%20AND%20TURBULENCE&rft.jtitle=The%20Astrophysical%20journal&rft.au=Chen,%20Che-Yu&rft.date=2014-04-10&rft.volume=785&rft.issue=1&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/785/1/69&rft_dat=%3Cproquest_osti_%3E1718917711%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-93d1f1f7425be1ab6fc90806fea4e0d742ed486d62c89ef69a0faed7a49adcf83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1701487844&rft_id=info:pmid/&rfr_iscdi=true |