Loading…
0.94-2.42 μm GROUND-BASED TRANSMISSION SPECTRA OF THE HOT JUPITER HD-189733b
We present here new transmission spectra of the hot Jupiter HD-189733b using the SpeX instrument on the NASA Infrared Telescope Facility. We obtained two nights of observations where we recorded the primary transit of the planet in the J, H, and K bands simultaneously, covering a spectral range from...
Saved in:
Published in: | The Astrophysical journal 2014-04, Vol.785 (1), p.1-12 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present here new transmission spectra of the hot Jupiter HD-189733b using the SpeX instrument on the NASA Infrared Telescope Facility. We obtained two nights of observations where we recorded the primary transit of the planet in the J, H, and K bands simultaneously, covering a spectral range from 0.94 to 2.42 mu m. We used Fourier analysis and other detrending techniques validated previously on other data sets to clean the data. We tested the statistical significance of our results by calculating the autocorrelation function, and we found that, after the detrending, autocorrelative noise is diminished at most frequencies. Additionally, we repeated our analysis on the out-of-transit data only, showing that the residual telluric contamination is well within the error bars. While these techniques are very efficient when multiple nights of observations are combined together, our results prove that even one good night of observations is enough to provide statistically meaningful data. Our observed spectra are consistent with space-based data recorded in the same wavelength interval by multiple instruments, indicating that ground-based facilities are becoming a viable and complementary option to spaceborne observatories. The best fit to the features in our data was obtained with water vapor. Our error bars are not small enough to address the presence of additional molecules; however, by combining the information contained in other data sets with our results, it is possible to explain all the available observations with a modeled atmospheric spectrum containing water vapor, methane, carbon monoxide, and hazes/clouds. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1088/0004-637X/785/1/35 |