Loading…
THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 ⩽ z ⩽ 6.5 IN CANDELS
Distant star-forming galaxies show a correlation between their star formation rates (SFRs) and stellar masses, and this has deep implications for galaxy formation. Here, we present a study on the evolution of the slope and scatter of the SFR-stellar mass relation for galaxies at 3.5 [< or =] z [&...
Saved in:
Published in: | The Astrophysical journal 2015-02, Vol.799 (2), p.1-27 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Distant star-forming galaxies show a correlation between their star formation rates (SFRs) and stellar masses, and this has deep implications for galaxy formation. Here, we present a study on the evolution of the slope and scatter of the SFR-stellar mass relation for galaxies at 3.5 [< or =] z [< or =] 6.5 using multi-wavelength photometry in GOODS-S from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and Spitzer Extended Deep Survey. We describe an updated, Bayesian spectral-energy distribution fitting method that incorporates effects of nebular line emission, star formation histories that are constant or rising with time, and different dust-attenuation prescriptions (starburst and Small Magellanic Cloud) We further show that the implied star formation history of objects selected on the basis of their co-moving number densities is consistent with the evolution in the SFR-stellar mass relation. |
---|---|
ISSN: | 1538-4357 0004-637X 1538-4357 |
DOI: | 10.1088/0004-637X/799/2/183 |