Loading…

THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS

To better understand the observed distributions of the rotation rate and magnetic activity of Sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar wind torque on the Rossby number. The torque also contains an empirically derived scaling with stellar...

Full description

Saved in:
Bibliographic Details
Published in:Astrophysical journal. Letters 2015-02, Vol.799 (2), p.1-6
Main Authors: Matt, Sean P, Brun, A Sacha, Baraffe, Isabelle, Bouvier, Jerome, Chabrier, Gilles
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-c86ce2709899345454e28cd004b9140ef83a67d3268462f724fae842821a0d1a3
cites cdi_FETCH-LOGICAL-c444t-c86ce2709899345454e28cd004b9140ef83a67d3268462f724fae842821a0d1a3
container_end_page 6
container_issue 2
container_start_page 1
container_title Astrophysical journal. Letters
container_volume 799
creator Matt, Sean P
Brun, A Sacha
Baraffe, Isabelle
Bouvier, Jerome
Chabrier, Gilles
description To better understand the observed distributions of the rotation rate and magnetic activity of Sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar wind torque on the Rossby number. The torque also contains an empirically derived scaling with stellar mass (and radius), which provides new insight into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars, and simultaneously why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the period-mass diagram for the Kepler field, notably: the particular shape of the "upper envelope" of the distribution, suggesting that ~95% of Kepler field stars with measured rotation periods are younger than ~4 Gyr; and the shape of the "lower envelope," corresponding to the location where stars transition between magnetically saturated and unsaturated regimes.
doi_str_mv 10.1088/2041-8205/799/2/L23
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22364356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1773833776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-c86ce2709899345454e28cd004b9140ef83a67d3268462f724fae842821a0d1a3</originalsourceid><addsrcrecordid>eNqNkU1Lw0AURYMoWKu_wE3AjQix89XMzDK00zaYD2kSt8M4ndBI29RMKvjvTUgRl_IW73E5PC4cx7mH4BkCxiYIEOgxBKYTyvkETSKEL5zROYX48s997dxY-wEAAj5kI2eWr4QbB1nmzcWrSOYimQk3XbhBsiyiYO3GaSySvIhd8ZZGRR6miRsmblYkXhS-CDfLg3V261yVamfN3XmPnWIh8tnKi9JlOAsiTxNCWk8zXxtEAWecYzLtxiCmNwCQdw4JMCXDyqcbjHxGfFRSREplGEFdawU2UOGx8zD8rW1bSaur1uitrg8Ho1uJEPYJnvod9TRQW7WTx6baq-Zb1qqSqyCS1cGeJMA-JoDBL9jBjwN8bOrPk7Gt3FdWm91OHUx9shJSjhElnE7_gVLMMKa0r4AHVDe1tY0pf3tAIHthstche2GyEyaR7IThH5Sefmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773833776</pqid></control><display><type>article</type><title>THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS</title><source>EZB Free E-Journals</source><creator>Matt, Sean P ; Brun, A Sacha ; Baraffe, Isabelle ; Bouvier, Jerome ; Chabrier, Gilles</creator><creatorcontrib>Matt, Sean P ; Brun, A Sacha ; Baraffe, Isabelle ; Bouvier, Jerome ; Chabrier, Gilles</creatorcontrib><description>To better understand the observed distributions of the rotation rate and magnetic activity of Sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar wind torque on the Rossby number. The torque also contains an empirically derived scaling with stellar mass (and radius), which provides new insight into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars, and simultaneously why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the period-mass diagram for the Kepler field, notably: the particular shape of the "upper envelope" of the distribution, suggesting that ~95% of Kepler field stars with measured rotation periods are younger than ~4 Gyr; and the shape of the "lower envelope," corresponding to the location where stars transition between magnetically saturated and unsaturated regimes.</description><identifier>ISSN: 2041-8213</identifier><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.1088/2041-8205/799/2/L23</identifier><language>eng</language><publisher>United States: Bristol : IOP Publishing</publisher><subject>ANGULAR MOMENTUM ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; DIAGRAMS ; Envelopes ; MAGNETIC FIELDS ; Magnetic properties ; MAGNETOHYDRODYNAMICS ; MAIN SEQUENCE STARS ; MASS ; Rotating ; ROTATION ; Sciences of the Universe ; STAR EVOLUTION ; Stars ; Stellar mass ; STELLAR WINDS ; TORQUE</subject><ispartof>Astrophysical journal. Letters, 2015-02, Vol.799 (2), p.1-6</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-c86ce2709899345454e28cd004b9140ef83a67d3268462f724fae842821a0d1a3</citedby><cites>FETCH-LOGICAL-c444t-c86ce2709899345454e28cd004b9140ef83a67d3268462f724fae842821a0d1a3</cites><orcidid>0000-0002-8342-9149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03634081$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22364356$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Matt, Sean P</creatorcontrib><creatorcontrib>Brun, A Sacha</creatorcontrib><creatorcontrib>Baraffe, Isabelle</creatorcontrib><creatorcontrib>Bouvier, Jerome</creatorcontrib><creatorcontrib>Chabrier, Gilles</creatorcontrib><title>THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS</title><title>Astrophysical journal. Letters</title><description>To better understand the observed distributions of the rotation rate and magnetic activity of Sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar wind torque on the Rossby number. The torque also contains an empirically derived scaling with stellar mass (and radius), which provides new insight into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars, and simultaneously why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the period-mass diagram for the Kepler field, notably: the particular shape of the "upper envelope" of the distribution, suggesting that ~95% of Kepler field stars with measured rotation periods are younger than ~4 Gyr; and the shape of the "lower envelope," corresponding to the location where stars transition between magnetically saturated and unsaturated regimes.</description><subject>ANGULAR MOMENTUM</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>DIAGRAMS</subject><subject>Envelopes</subject><subject>MAGNETIC FIELDS</subject><subject>Magnetic properties</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>MAIN SEQUENCE STARS</subject><subject>MASS</subject><subject>Rotating</subject><subject>ROTATION</subject><subject>Sciences of the Universe</subject><subject>STAR EVOLUTION</subject><subject>Stars</subject><subject>Stellar mass</subject><subject>STELLAR WINDS</subject><subject>TORQUE</subject><issn>2041-8213</issn><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1Lw0AURYMoWKu_wE3AjQix89XMzDK00zaYD2kSt8M4ndBI29RMKvjvTUgRl_IW73E5PC4cx7mH4BkCxiYIEOgxBKYTyvkETSKEL5zROYX48s997dxY-wEAAj5kI2eWr4QbB1nmzcWrSOYimQk3XbhBsiyiYO3GaSySvIhd8ZZGRR6miRsmblYkXhS-CDfLg3V261yVamfN3XmPnWIh8tnKi9JlOAsiTxNCWk8zXxtEAWecYzLtxiCmNwCQdw4JMCXDyqcbjHxGfFRSREplGEFdawU2UOGx8zD8rW1bSaur1uitrg8Ho1uJEPYJnvod9TRQW7WTx6baq-Zb1qqSqyCS1cGeJMA-JoDBL9jBjwN8bOrPk7Gt3FdWm91OHUx9shJSjhElnE7_gVLMMKa0r4AHVDe1tY0pf3tAIHthstche2GyEyaR7IThH5Sefmg</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Matt, Sean P</creator><creator>Brun, A Sacha</creator><creator>Baraffe, Isabelle</creator><creator>Bouvier, Jerome</creator><creator>Chabrier, Gilles</creator><general>Bristol : IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8342-9149</orcidid></search><sort><creationdate>20150201</creationdate><title>THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS</title><author>Matt, Sean P ; Brun, A Sacha ; Baraffe, Isabelle ; Bouvier, Jerome ; Chabrier, Gilles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-c86ce2709899345454e28cd004b9140ef83a67d3268462f724fae842821a0d1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ANGULAR MOMENTUM</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>DIAGRAMS</topic><topic>Envelopes</topic><topic>MAGNETIC FIELDS</topic><topic>Magnetic properties</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>MAIN SEQUENCE STARS</topic><topic>MASS</topic><topic>Rotating</topic><topic>ROTATION</topic><topic>Sciences of the Universe</topic><topic>STAR EVOLUTION</topic><topic>Stars</topic><topic>Stellar mass</topic><topic>STELLAR WINDS</topic><topic>TORQUE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matt, Sean P</creatorcontrib><creatorcontrib>Brun, A Sacha</creatorcontrib><creatorcontrib>Baraffe, Isabelle</creatorcontrib><creatorcontrib>Bouvier, Jerome</creatorcontrib><creatorcontrib>Chabrier, Gilles</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matt, Sean P</au><au>Brun, A Sacha</au><au>Baraffe, Isabelle</au><au>Bouvier, Jerome</au><au>Chabrier, Gilles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS</atitle><jtitle>Astrophysical journal. Letters</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>799</volume><issue>2</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2041-8213</issn><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>To better understand the observed distributions of the rotation rate and magnetic activity of Sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar wind torque on the Rossby number. The torque also contains an empirically derived scaling with stellar mass (and radius), which provides new insight into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars, and simultaneously why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the period-mass diagram for the Kepler field, notably: the particular shape of the "upper envelope" of the distribution, suggesting that ~95% of Kepler field stars with measured rotation periods are younger than ~4 Gyr; and the shape of the "lower envelope," corresponding to the location where stars transition between magnetically saturated and unsaturated regimes.</abstract><cop>United States</cop><pub>Bristol : IOP Publishing</pub><doi>10.1088/2041-8205/799/2/L23</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8342-9149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-8213
ispartof Astrophysical journal. Letters, 2015-02, Vol.799 (2), p.1-6
issn 2041-8213
2041-8205
2041-8213
language eng
recordid cdi_osti_scitechconnect_22364356
source EZB Free E-Journals
subjects ANGULAR MOMENTUM
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
DIAGRAMS
Envelopes
MAGNETIC FIELDS
Magnetic properties
MAGNETOHYDRODYNAMICS
MAIN SEQUENCE STARS
MASS
Rotating
ROTATION
Sciences of the Universe
STAR EVOLUTION
Stars
Stellar mass
STELLAR WINDS
TORQUE
title THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20MASS-DEPENDENCE%20OF%20ANGULAR%20MOMENTUM%20EVOLUTION%20IN%20SUN-LIKE%20STARS&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Matt,%20Sean%20P&rft.date=2015-02-01&rft.volume=799&rft.issue=2&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2041-8213&rft.eissn=2041-8213&rft_id=info:doi/10.1088/2041-8205/799/2/L23&rft_dat=%3Cproquest_osti_%3E1773833776%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-c86ce2709899345454e28cd004b9140ef83a67d3268462f724fae842821a0d1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1773833776&rft_id=info:pmid/&rfr_iscdi=true