Loading…
THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS
To better understand the observed distributions of the rotation rate and magnetic activity of Sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar wind torque on the Rossby number. The torque also contains an empirically derived scaling with stellar...
Saved in:
Published in: | Astrophysical journal. Letters 2015-02, Vol.799 (2), p.1-6 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-c86ce2709899345454e28cd004b9140ef83a67d3268462f724fae842821a0d1a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-c86ce2709899345454e28cd004b9140ef83a67d3268462f724fae842821a0d1a3 |
container_end_page | 6 |
container_issue | 2 |
container_start_page | 1 |
container_title | Astrophysical journal. Letters |
container_volume | 799 |
creator | Matt, Sean P Brun, A Sacha Baraffe, Isabelle Bouvier, Jerome Chabrier, Gilles |
description | To better understand the observed distributions of the rotation rate and magnetic activity of Sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar wind torque on the Rossby number. The torque also contains an empirically derived scaling with stellar mass (and radius), which provides new insight into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars, and simultaneously why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the period-mass diagram for the Kepler field, notably: the particular shape of the "upper envelope" of the distribution, suggesting that ~95% of Kepler field stars with measured rotation periods are younger than ~4 Gyr; and the shape of the "lower envelope," corresponding to the location where stars transition between magnetically saturated and unsaturated regimes. |
doi_str_mv | 10.1088/2041-8205/799/2/L23 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22364356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1773833776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-c86ce2709899345454e28cd004b9140ef83a67d3268462f724fae842821a0d1a3</originalsourceid><addsrcrecordid>eNqNkU1Lw0AURYMoWKu_wE3AjQix89XMzDK00zaYD2kSt8M4ndBI29RMKvjvTUgRl_IW73E5PC4cx7mH4BkCxiYIEOgxBKYTyvkETSKEL5zROYX48s997dxY-wEAAj5kI2eWr4QbB1nmzcWrSOYimQk3XbhBsiyiYO3GaSySvIhd8ZZGRR6miRsmblYkXhS-CDfLg3V261yVamfN3XmPnWIh8tnKi9JlOAsiTxNCWk8zXxtEAWecYzLtxiCmNwCQdw4JMCXDyqcbjHxGfFRSREplGEFdawU2UOGx8zD8rW1bSaur1uitrg8Ho1uJEPYJnvod9TRQW7WTx6baq-Zb1qqSqyCS1cGeJMA-JoDBL9jBjwN8bOrPk7Gt3FdWm91OHUx9shJSjhElnE7_gVLMMKa0r4AHVDe1tY0pf3tAIHthstche2GyEyaR7IThH5Sefmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773833776</pqid></control><display><type>article</type><title>THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS</title><source>EZB Free E-Journals</source><creator>Matt, Sean P ; Brun, A Sacha ; Baraffe, Isabelle ; Bouvier, Jerome ; Chabrier, Gilles</creator><creatorcontrib>Matt, Sean P ; Brun, A Sacha ; Baraffe, Isabelle ; Bouvier, Jerome ; Chabrier, Gilles</creatorcontrib><description>To better understand the observed distributions of the rotation rate and magnetic activity of Sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar wind torque on the Rossby number. The torque also contains an empirically derived scaling with stellar mass (and radius), which provides new insight into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars, and simultaneously why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the period-mass diagram for the Kepler field, notably: the particular shape of the "upper envelope" of the distribution, suggesting that ~95% of Kepler field stars with measured rotation periods are younger than ~4 Gyr; and the shape of the "lower envelope," corresponding to the location where stars transition between magnetically saturated and unsaturated regimes.</description><identifier>ISSN: 2041-8213</identifier><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.1088/2041-8205/799/2/L23</identifier><language>eng</language><publisher>United States: Bristol : IOP Publishing</publisher><subject>ANGULAR MOMENTUM ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; DIAGRAMS ; Envelopes ; MAGNETIC FIELDS ; Magnetic properties ; MAGNETOHYDRODYNAMICS ; MAIN SEQUENCE STARS ; MASS ; Rotating ; ROTATION ; Sciences of the Universe ; STAR EVOLUTION ; Stars ; Stellar mass ; STELLAR WINDS ; TORQUE</subject><ispartof>Astrophysical journal. Letters, 2015-02, Vol.799 (2), p.1-6</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-c86ce2709899345454e28cd004b9140ef83a67d3268462f724fae842821a0d1a3</citedby><cites>FETCH-LOGICAL-c444t-c86ce2709899345454e28cd004b9140ef83a67d3268462f724fae842821a0d1a3</cites><orcidid>0000-0002-8342-9149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03634081$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22364356$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Matt, Sean P</creatorcontrib><creatorcontrib>Brun, A Sacha</creatorcontrib><creatorcontrib>Baraffe, Isabelle</creatorcontrib><creatorcontrib>Bouvier, Jerome</creatorcontrib><creatorcontrib>Chabrier, Gilles</creatorcontrib><title>THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS</title><title>Astrophysical journal. Letters</title><description>To better understand the observed distributions of the rotation rate and magnetic activity of Sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar wind torque on the Rossby number. The torque also contains an empirically derived scaling with stellar mass (and radius), which provides new insight into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars, and simultaneously why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the period-mass diagram for the Kepler field, notably: the particular shape of the "upper envelope" of the distribution, suggesting that ~95% of Kepler field stars with measured rotation periods are younger than ~4 Gyr; and the shape of the "lower envelope," corresponding to the location where stars transition between magnetically saturated and unsaturated regimes.</description><subject>ANGULAR MOMENTUM</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>DIAGRAMS</subject><subject>Envelopes</subject><subject>MAGNETIC FIELDS</subject><subject>Magnetic properties</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>MAIN SEQUENCE STARS</subject><subject>MASS</subject><subject>Rotating</subject><subject>ROTATION</subject><subject>Sciences of the Universe</subject><subject>STAR EVOLUTION</subject><subject>Stars</subject><subject>Stellar mass</subject><subject>STELLAR WINDS</subject><subject>TORQUE</subject><issn>2041-8213</issn><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1Lw0AURYMoWKu_wE3AjQix89XMzDK00zaYD2kSt8M4ndBI29RMKvjvTUgRl_IW73E5PC4cx7mH4BkCxiYIEOgxBKYTyvkETSKEL5zROYX48s997dxY-wEAAj5kI2eWr4QbB1nmzcWrSOYimQk3XbhBsiyiYO3GaSySvIhd8ZZGRR6miRsmblYkXhS-CDfLg3V261yVamfN3XmPnWIh8tnKi9JlOAsiTxNCWk8zXxtEAWecYzLtxiCmNwCQdw4JMCXDyqcbjHxGfFRSREplGEFdawU2UOGx8zD8rW1bSaur1uitrg8Ho1uJEPYJnvod9TRQW7WTx6baq-Zb1qqSqyCS1cGeJMA-JoDBL9jBjwN8bOrPk7Gt3FdWm91OHUx9shJSjhElnE7_gVLMMKa0r4AHVDe1tY0pf3tAIHthstche2GyEyaR7IThH5Sefmg</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Matt, Sean P</creator><creator>Brun, A Sacha</creator><creator>Baraffe, Isabelle</creator><creator>Bouvier, Jerome</creator><creator>Chabrier, Gilles</creator><general>Bristol : IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8342-9149</orcidid></search><sort><creationdate>20150201</creationdate><title>THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS</title><author>Matt, Sean P ; Brun, A Sacha ; Baraffe, Isabelle ; Bouvier, Jerome ; Chabrier, Gilles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-c86ce2709899345454e28cd004b9140ef83a67d3268462f724fae842821a0d1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ANGULAR MOMENTUM</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>DIAGRAMS</topic><topic>Envelopes</topic><topic>MAGNETIC FIELDS</topic><topic>Magnetic properties</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>MAIN SEQUENCE STARS</topic><topic>MASS</topic><topic>Rotating</topic><topic>ROTATION</topic><topic>Sciences of the Universe</topic><topic>STAR EVOLUTION</topic><topic>Stars</topic><topic>Stellar mass</topic><topic>STELLAR WINDS</topic><topic>TORQUE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matt, Sean P</creatorcontrib><creatorcontrib>Brun, A Sacha</creatorcontrib><creatorcontrib>Baraffe, Isabelle</creatorcontrib><creatorcontrib>Bouvier, Jerome</creatorcontrib><creatorcontrib>Chabrier, Gilles</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matt, Sean P</au><au>Brun, A Sacha</au><au>Baraffe, Isabelle</au><au>Bouvier, Jerome</au><au>Chabrier, Gilles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS</atitle><jtitle>Astrophysical journal. Letters</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>799</volume><issue>2</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2041-8213</issn><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>To better understand the observed distributions of the rotation rate and magnetic activity of Sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar wind torque on the Rossby number. The torque also contains an empirically derived scaling with stellar mass (and radius), which provides new insight into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars, and simultaneously why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the period-mass diagram for the Kepler field, notably: the particular shape of the "upper envelope" of the distribution, suggesting that ~95% of Kepler field stars with measured rotation periods are younger than ~4 Gyr; and the shape of the "lower envelope," corresponding to the location where stars transition between magnetically saturated and unsaturated regimes.</abstract><cop>United States</cop><pub>Bristol : IOP Publishing</pub><doi>10.1088/2041-8205/799/2/L23</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8342-9149</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-8213 |
ispartof | Astrophysical journal. Letters, 2015-02, Vol.799 (2), p.1-6 |
issn | 2041-8213 2041-8205 2041-8213 |
language | eng |
recordid | cdi_osti_scitechconnect_22364356 |
source | EZB Free E-Journals |
subjects | ANGULAR MOMENTUM ASTROPHYSICS, COSMOLOGY AND ASTRONOMY DIAGRAMS Envelopes MAGNETIC FIELDS Magnetic properties MAGNETOHYDRODYNAMICS MAIN SEQUENCE STARS MASS Rotating ROTATION Sciences of the Universe STAR EVOLUTION Stars Stellar mass STELLAR WINDS TORQUE |
title | THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20MASS-DEPENDENCE%20OF%20ANGULAR%20MOMENTUM%20EVOLUTION%20IN%20SUN-LIKE%20STARS&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Matt,%20Sean%20P&rft.date=2015-02-01&rft.volume=799&rft.issue=2&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2041-8213&rft.eissn=2041-8213&rft_id=info:doi/10.1088/2041-8205/799/2/L23&rft_dat=%3Cproquest_osti_%3E1773833776%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-c86ce2709899345454e28cd004b9140ef83a67d3268462f724fae842821a0d1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1773833776&rft_id=info:pmid/&rfr_iscdi=true |