Loading…

AN ASYMMETRIC JET-LAUNCHING MODEL FOR THE PROTOPLANETARY NEBULA CRL 618

We propose an asymmetrical jet-ejection mechanism in order to model the mirror symmetry observed in the lobe distribution of some protoplanetary nebulae (pPNs), such as the pPN CRL 618. Three-dimensional hydrodynamical simulations of a precessing jet launched from an orbiting source were carried out...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2014-10, Vol.794 (2), p.1-7
Main Authors: Velazquez, Pablo F, Riera, Angels, Raga, Alejandro C, Toledo-Roy, Juan C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose an asymmetrical jet-ejection mechanism in order to model the mirror symmetry observed in the lobe distribution of some protoplanetary nebulae (pPNs), such as the pPN CRL 618. Three-dimensional hydrodynamical simulations of a precessing jet launched from an orbiting source were carried out, including an alternation in the ejections of the two outflow lobes, depending on which side of the precessing accretion disk is hit by the accretion column from a Roche lobe-filling binary companion. Both synthetic optical emission maps and position-velocity diagrams were obtained from the numerical results with the purpose of carrying out a direct comparison with observations. Depending on the observer's point of view, multipolar morphologies are obtained that exhibit a mirror symmetry at large distances from the central source. The obtained lobe sizes and their spatial distributions are in good agreement with the observed morphology of the pPN CRL 618. We also obtain that the kinematic ages of the fingers are similar to those obtained in the observations.
ISSN:1538-4357
0004-637X
1538-4357
DOI:10.1088/0004-637X/794/2/128