Loading…
Induced-gravity inflation in no-scale supergravity and beyond
Supersymmetric versions of induced-gravity inflation are formulated within Supergravity (SUGRA) employing two gauge singlet chiral superfields. The proposed superpotential is uniquely determined by applying a continuous R and a discrete Z{sub n} symmetry. We select two types of logarithmic Kähler po...
Saved in:
Published in: | Journal of cosmology and astroparticle physics 2014-08, Vol.2014 (8), p.57-57 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Supersymmetric versions of induced-gravity inflation are formulated within Supergravity (SUGRA) employing two gauge singlet chiral superfields. The proposed superpotential is uniquely determined by applying a continuous R and a discrete Z{sub n} symmetry. We select two types of logarithmic Kähler potentials, one associated with a no-scale-type SU(2,1)/SU(2)× U(1){sub R}×Z{sub n} Kähler manifold and one more generic. In both cases, imposing a lower bound on the parameter c{sub R} involved in the coupling between the inflaton and the Ricci scalar curvature — e.g. c{sub R}∼> 76, 105, 310 for n=2,3 and 6 respectively —, inflation can be attained even for subplanckian values of the inflaton while the corresponding effective theory respects the perturbative unitarity. In the case of no-scale SUGRA we show that, for every n, the inflationary observables remain unchanged and in agreement with the current data while the inflaton mass is predicted to be 3·10{sup 13} GeV. Beyond no-scale SUGRA the inflationary observables depend mildly on n and crucially on the coefficient involved in the fourth order term of the Kähler potential which mixes the inflaton with the accompanying non-inflaton field. |
---|---|
ISSN: | 1475-7516 1475-7516 |
DOI: | 10.1088/1475-7516/2014/08/057 |