Loading…
Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential
We study the physics potential of the detection of the Cosmic Neutrino Background via neutrino capture on tritium, taking the proposed PTOLEMY experiment as a case study. With the projected energy resolution of Δ ∼ 0.15 eV, the experiment will be sensitive to neutrino masses with degenerate spectrum...
Saved in:
Published in: | Journal of cosmology and astroparticle physics 2014-08, Vol.2014 (8), p.38-38 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the physics potential of the detection of the Cosmic Neutrino Background via neutrino capture on tritium, taking the proposed PTOLEMY experiment as a case study. With the projected energy resolution of Δ ∼ 0.15 eV, the experiment will be sensitive to neutrino masses with degenerate spectrum, m{sub 1} ≅ m{sub 2} ≅ m{sub 3} = m{sub ν} ∼> 0.1 eV. These neutrinos are non-relativistic today; detecting them would be a unique opportunity to probe this unexplored kinematical regime. The signature of neutrino capture is a peak in the electron spectrum that is displaced by 2 m{sub ν} above the beta decay endpoint. The signal would exceed the background from beta decay if the energy resolution is Δ ∼ |
---|---|
ISSN: | 1475-7516 1475-7516 |
DOI: | 10.1088/1475-7516/2014/08/038 |