Loading…
Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope
The brightness and interference fringes of a spin-polarized electron beam extracted from a semiconductor photocathode excited by laser irradiation are directly measured via its use in a transmission electron microscope. The brightness was 3.8 × 107 A cm−2 sr−1 for a 30-keV beam energy with the polar...
Saved in:
Published in: | Applied physics letters 2014-11, Vol.105 (19) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The brightness and interference fringes of a spin-polarized electron beam extracted from a semiconductor photocathode excited by laser irradiation are directly measured via its use in a transmission electron microscope. The brightness was 3.8 × 107 A cm−2 sr−1 for a 30-keV beam energy with the polarization of 82%, which corresponds to 3.1 × 108 A cm−2 sr−1 for a 200-keV beam energy. The resulting electron beam exhibited a long coherence length at the specimen position due to the high parallelism of (1.7 ± 0.3) × 10−5 rad, which generated interference fringes representative of a first-order correlation using an electron biprism. The beam also had a high degeneracy of electron wavepacket of 4 × 10−6. Due to the high polarization, the high degeneracy and the long coherence length, the spin-polarized electron beam can enhance the antibunching effect. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4901745 |