Loading…
Sequential lateral solidification of silicon thin films on low-k dielectrics for low temperature integration
We present the excimer laser crystallization of amorphous silicon on a low dielectric constant (low-k) insulator for very large scale integration monolithic 3D integration and demonstrate that low dielectric constant materials are suitable substrates for 3D integration through laser crystallization...
Saved in:
Published in: | Applied physics letters 2014-12, Vol.105 (24) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c285t-9ad8843e60d31afa7183b03c2f8b6498bfd05b060e7681144e1b292d0f443ab93 |
---|---|
cites | cdi_FETCH-LOGICAL-c285t-9ad8843e60d31afa7183b03c2f8b6498bfd05b060e7681144e1b292d0f443ab93 |
container_end_page | |
container_issue | 24 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 105 |
creator | Carta, Fabio Gates, Stephen M. Limanov, Alexander B. Hlaing, Htay Im, James S. Edelstein, Daniel C. Kymissis, Ioannis |
description | We present the excimer laser crystallization of amorphous silicon on a low dielectric constant (low-k) insulator for very large scale integration monolithic 3D integration and demonstrate that low dielectric constant materials are suitable substrates for 3D integration through laser crystallization of silicon thin films. We crystallized 100 nm amorphous silicon on top of SiO2 and SiCOH (low-k) dielectrics, at different material thicknesses (1 μm, 0.75 μm, and 0.5 μm). The amorphous silicon crystallization on low-k dielectric requires 35% less laser energy than on an SiO2 dielectric. This difference is related to the thermal conductivity of the two materials, in agreement with one dimensional simulations of the crystallization process. We analyzed the morphology of the material through defect-enhanced microscopy, Raman spectroscopy, and X-ray diffraction analysis. SEM micrographs show that polycrystalline silicon is characterized by micron-long grains with an average width of 543 nm for the SiO2 sample and 570 nm for the low-k samples. Comparison of the Raman spectra does not show any major difference in film quality for the two different dielectrics, and polycrystalline silicon peaks are closely placed around 517 cm−1. From X-ray diffraction analysis, the material crystallized on SiO2 shows a preferential (111) crystal orientation. In the SiCOH case, the 111 peak strength decreases dramatically and samples do not show preferential crystal orientation. A 1D finite element method simulation of the crystallization process on a back end of line structure shows that copper (Cu) damascene interconnects reach a temperature of 70 °C or lower with a 0.5 μm dielectric layer between the Cu and the molten Si layer, a favorable condition for monolithic 3D integration. |
doi_str_mv | 10.1063/1.4904938 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22395545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126489093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-9ad8843e60d31afa7183b03c2f8b6498bfd05b060e7681144e1b292d0f443ab93</originalsourceid><addsrcrecordid>eNpFkE9LAzEUxIMoWKsHv0HAk4fVvCS7TY5S_AcFD-o5ZLOJTU03NUkRv72pLXiaN49hGH4IXQK5AdKxW7jhknDJxBGaAJnNGgYgjtGEEMKaTrZwis5yXlXbUsYmKLzar60di9cBB11sqppj8IN33uji44ijw9kHb-pZln7Ezod1xtWF-N184sHbYE1J3mTsYtp9cbHrTa0q22SxH4v9SH9V5-jE6ZDtxUGn6P3h_m3-1CxeHp_nd4vGUNGWRupBCM5sRwYG2ukZCNYTZqgTfcel6N1A2p50xM46AcC5hZ5KOhDHOdO9ZFN0te-NuXiVjS_WLOv-se5UlDLZtrz9T21SrAxyUau4TWMdpijQjgtJJKup633KpJhzsk5tkl_r9KOAqB1yBeqAnP0CfT9zgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126489093</pqid></control><display><type>article</type><title>Sequential lateral solidification of silicon thin films on low-k dielectrics for low temperature integration</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Carta, Fabio ; Gates, Stephen M. ; Limanov, Alexander B. ; Hlaing, Htay ; Im, James S. ; Edelstein, Daniel C. ; Kymissis, Ioannis</creator><creatorcontrib>Carta, Fabio ; Gates, Stephen M. ; Limanov, Alexander B. ; Hlaing, Htay ; Im, James S. ; Edelstein, Daniel C. ; Kymissis, Ioannis</creatorcontrib><description>We present the excimer laser crystallization of amorphous silicon on a low dielectric constant (low-k) insulator for very large scale integration monolithic 3D integration and demonstrate that low dielectric constant materials are suitable substrates for 3D integration through laser crystallization of silicon thin films. We crystallized 100 nm amorphous silicon on top of SiO2 and SiCOH (low-k) dielectrics, at different material thicknesses (1 μm, 0.75 μm, and 0.5 μm). The amorphous silicon crystallization on low-k dielectric requires 35% less laser energy than on an SiO2 dielectric. This difference is related to the thermal conductivity of the two materials, in agreement with one dimensional simulations of the crystallization process. We analyzed the morphology of the material through defect-enhanced microscopy, Raman spectroscopy, and X-ray diffraction analysis. SEM micrographs show that polycrystalline silicon is characterized by micron-long grains with an average width of 543 nm for the SiO2 sample and 570 nm for the low-k samples. Comparison of the Raman spectra does not show any major difference in film quality for the two different dielectrics, and polycrystalline silicon peaks are closely placed around 517 cm−1. From X-ray diffraction analysis, the material crystallized on SiO2 shows a preferential (111) crystal orientation. In the SiCOH case, the 111 peak strength decreases dramatically and samples do not show preferential crystal orientation. A 1D finite element method simulation of the crystallization process on a back end of line structure shows that copper (Cu) damascene interconnects reach a temperature of 70 °C or lower with a 0.5 μm dielectric layer between the Cu and the molten Si layer, a favorable condition for monolithic 3D integration.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4904938</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amorphous silicon ; Applied physics ; Computer simulation ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; COPPER ; Crystal structure ; CRYSTALLIZATION ; DIELECTRIC MATERIALS ; EXCIMER LASERS ; Excimers ; FINITE ELEMENT METHOD ; Lasers ; LAYERS ; Low temperature ; MORPHOLOGY ; PERMITTIVITY ; Photomicrographs ; Photovoltaic cells ; POLYCRYSTALS ; RAMAN SPECTRA ; RAMAN SPECTROSCOPY ; SCANNING ELECTRON MICROSCOPY ; SILICON ; Silicon dioxide ; Silicon films ; SILICON OXIDES ; SOLIDIFICATION ; Spectrum analysis ; SUBSTRATES ; THERMAL CONDUCTIVITY ; THIN FILMS ; Very large scale integration ; X ray spectra ; X-RAY DIFFRACTION</subject><ispartof>Applied physics letters, 2014-12, Vol.105 (24)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-9ad8843e60d31afa7183b03c2f8b6498bfd05b060e7681144e1b292d0f443ab93</citedby><cites>FETCH-LOGICAL-c285t-9ad8843e60d31afa7183b03c2f8b6498bfd05b060e7681144e1b292d0f443ab93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,782,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22395545$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carta, Fabio</creatorcontrib><creatorcontrib>Gates, Stephen M.</creatorcontrib><creatorcontrib>Limanov, Alexander B.</creatorcontrib><creatorcontrib>Hlaing, Htay</creatorcontrib><creatorcontrib>Im, James S.</creatorcontrib><creatorcontrib>Edelstein, Daniel C.</creatorcontrib><creatorcontrib>Kymissis, Ioannis</creatorcontrib><title>Sequential lateral solidification of silicon thin films on low-k dielectrics for low temperature integration</title><title>Applied physics letters</title><description>We present the excimer laser crystallization of amorphous silicon on a low dielectric constant (low-k) insulator for very large scale integration monolithic 3D integration and demonstrate that low dielectric constant materials are suitable substrates for 3D integration through laser crystallization of silicon thin films. We crystallized 100 nm amorphous silicon on top of SiO2 and SiCOH (low-k) dielectrics, at different material thicknesses (1 μm, 0.75 μm, and 0.5 μm). The amorphous silicon crystallization on low-k dielectric requires 35% less laser energy than on an SiO2 dielectric. This difference is related to the thermal conductivity of the two materials, in agreement with one dimensional simulations of the crystallization process. We analyzed the morphology of the material through defect-enhanced microscopy, Raman spectroscopy, and X-ray diffraction analysis. SEM micrographs show that polycrystalline silicon is characterized by micron-long grains with an average width of 543 nm for the SiO2 sample and 570 nm for the low-k samples. Comparison of the Raman spectra does not show any major difference in film quality for the two different dielectrics, and polycrystalline silicon peaks are closely placed around 517 cm−1. From X-ray diffraction analysis, the material crystallized on SiO2 shows a preferential (111) crystal orientation. In the SiCOH case, the 111 peak strength decreases dramatically and samples do not show preferential crystal orientation. A 1D finite element method simulation of the crystallization process on a back end of line structure shows that copper (Cu) damascene interconnects reach a temperature of 70 °C or lower with a 0.5 μm dielectric layer between the Cu and the molten Si layer, a favorable condition for monolithic 3D integration.</description><subject>Amorphous silicon</subject><subject>Applied physics</subject><subject>Computer simulation</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>COPPER</subject><subject>Crystal structure</subject><subject>CRYSTALLIZATION</subject><subject>DIELECTRIC MATERIALS</subject><subject>EXCIMER LASERS</subject><subject>Excimers</subject><subject>FINITE ELEMENT METHOD</subject><subject>Lasers</subject><subject>LAYERS</subject><subject>Low temperature</subject><subject>MORPHOLOGY</subject><subject>PERMITTIVITY</subject><subject>Photomicrographs</subject><subject>Photovoltaic cells</subject><subject>POLYCRYSTALS</subject><subject>RAMAN SPECTRA</subject><subject>RAMAN SPECTROSCOPY</subject><subject>SCANNING ELECTRON MICROSCOPY</subject><subject>SILICON</subject><subject>Silicon dioxide</subject><subject>Silicon films</subject><subject>SILICON OXIDES</subject><subject>SOLIDIFICATION</subject><subject>Spectrum analysis</subject><subject>SUBSTRATES</subject><subject>THERMAL CONDUCTIVITY</subject><subject>THIN FILMS</subject><subject>Very large scale integration</subject><subject>X ray spectra</subject><subject>X-RAY DIFFRACTION</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEUxIMoWKsHv0HAk4fVvCS7TY5S_AcFD-o5ZLOJTU03NUkRv72pLXiaN49hGH4IXQK5AdKxW7jhknDJxBGaAJnNGgYgjtGEEMKaTrZwis5yXlXbUsYmKLzar60di9cBB11sqppj8IN33uji44ijw9kHb-pZln7Ezod1xtWF-N184sHbYE1J3mTsYtp9cbHrTa0q22SxH4v9SH9V5-jE6ZDtxUGn6P3h_m3-1CxeHp_nd4vGUNGWRupBCM5sRwYG2ukZCNYTZqgTfcel6N1A2p50xM46AcC5hZ5KOhDHOdO9ZFN0te-NuXiVjS_WLOv-se5UlDLZtrz9T21SrAxyUau4TWMdpijQjgtJJKup633KpJhzsk5tkl_r9KOAqB1yBeqAnP0CfT9zgA</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Carta, Fabio</creator><creator>Gates, Stephen M.</creator><creator>Limanov, Alexander B.</creator><creator>Hlaing, Htay</creator><creator>Im, James S.</creator><creator>Edelstein, Daniel C.</creator><creator>Kymissis, Ioannis</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20141215</creationdate><title>Sequential lateral solidification of silicon thin films on low-k dielectrics for low temperature integration</title><author>Carta, Fabio ; Gates, Stephen M. ; Limanov, Alexander B. ; Hlaing, Htay ; Im, James S. ; Edelstein, Daniel C. ; Kymissis, Ioannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-9ad8843e60d31afa7183b03c2f8b6498bfd05b060e7681144e1b292d0f443ab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amorphous silicon</topic><topic>Applied physics</topic><topic>Computer simulation</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>COPPER</topic><topic>Crystal structure</topic><topic>CRYSTALLIZATION</topic><topic>DIELECTRIC MATERIALS</topic><topic>EXCIMER LASERS</topic><topic>Excimers</topic><topic>FINITE ELEMENT METHOD</topic><topic>Lasers</topic><topic>LAYERS</topic><topic>Low temperature</topic><topic>MORPHOLOGY</topic><topic>PERMITTIVITY</topic><topic>Photomicrographs</topic><topic>Photovoltaic cells</topic><topic>POLYCRYSTALS</topic><topic>RAMAN SPECTRA</topic><topic>RAMAN SPECTROSCOPY</topic><topic>SCANNING ELECTRON MICROSCOPY</topic><topic>SILICON</topic><topic>Silicon dioxide</topic><topic>Silicon films</topic><topic>SILICON OXIDES</topic><topic>SOLIDIFICATION</topic><topic>Spectrum analysis</topic><topic>SUBSTRATES</topic><topic>THERMAL CONDUCTIVITY</topic><topic>THIN FILMS</topic><topic>Very large scale integration</topic><topic>X ray spectra</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carta, Fabio</creatorcontrib><creatorcontrib>Gates, Stephen M.</creatorcontrib><creatorcontrib>Limanov, Alexander B.</creatorcontrib><creatorcontrib>Hlaing, Htay</creatorcontrib><creatorcontrib>Im, James S.</creatorcontrib><creatorcontrib>Edelstein, Daniel C.</creatorcontrib><creatorcontrib>Kymissis, Ioannis</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carta, Fabio</au><au>Gates, Stephen M.</au><au>Limanov, Alexander B.</au><au>Hlaing, Htay</au><au>Im, James S.</au><au>Edelstein, Daniel C.</au><au>Kymissis, Ioannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential lateral solidification of silicon thin films on low-k dielectrics for low temperature integration</atitle><jtitle>Applied physics letters</jtitle><date>2014-12-15</date><risdate>2014</risdate><volume>105</volume><issue>24</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We present the excimer laser crystallization of amorphous silicon on a low dielectric constant (low-k) insulator for very large scale integration monolithic 3D integration and demonstrate that low dielectric constant materials are suitable substrates for 3D integration through laser crystallization of silicon thin films. We crystallized 100 nm amorphous silicon on top of SiO2 and SiCOH (low-k) dielectrics, at different material thicknesses (1 μm, 0.75 μm, and 0.5 μm). The amorphous silicon crystallization on low-k dielectric requires 35% less laser energy than on an SiO2 dielectric. This difference is related to the thermal conductivity of the two materials, in agreement with one dimensional simulations of the crystallization process. We analyzed the morphology of the material through defect-enhanced microscopy, Raman spectroscopy, and X-ray diffraction analysis. SEM micrographs show that polycrystalline silicon is characterized by micron-long grains with an average width of 543 nm for the SiO2 sample and 570 nm for the low-k samples. Comparison of the Raman spectra does not show any major difference in film quality for the two different dielectrics, and polycrystalline silicon peaks are closely placed around 517 cm−1. From X-ray diffraction analysis, the material crystallized on SiO2 shows a preferential (111) crystal orientation. In the SiCOH case, the 111 peak strength decreases dramatically and samples do not show preferential crystal orientation. A 1D finite element method simulation of the crystallization process on a back end of line structure shows that copper (Cu) damascene interconnects reach a temperature of 70 °C or lower with a 0.5 μm dielectric layer between the Cu and the molten Si layer, a favorable condition for monolithic 3D integration.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4904938</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2014-12, Vol.105 (24) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22395545 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Amorphous silicon Applied physics Computer simulation CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY COPPER Crystal structure CRYSTALLIZATION DIELECTRIC MATERIALS EXCIMER LASERS Excimers FINITE ELEMENT METHOD Lasers LAYERS Low temperature MORPHOLOGY PERMITTIVITY Photomicrographs Photovoltaic cells POLYCRYSTALS RAMAN SPECTRA RAMAN SPECTROSCOPY SCANNING ELECTRON MICROSCOPY SILICON Silicon dioxide Silicon films SILICON OXIDES SOLIDIFICATION Spectrum analysis SUBSTRATES THERMAL CONDUCTIVITY THIN FILMS Very large scale integration X ray spectra X-RAY DIFFRACTION |
title | Sequential lateral solidification of silicon thin films on low-k dielectrics for low temperature integration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20lateral%20solidification%20of%20silicon%20thin%20films%20on%20low-k%20dielectrics%20for%20low%20temperature%20integration&rft.jtitle=Applied%20physics%20letters&rft.au=Carta,%20Fabio&rft.date=2014-12-15&rft.volume=105&rft.issue=24&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4904938&rft_dat=%3Cproquest_osti_%3E2126489093%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-9ad8843e60d31afa7183b03c2f8b6498bfd05b060e7681144e1b292d0f443ab93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126489093&rft_id=info:pmid/&rfr_iscdi=true |