Loading…

Sequential lateral solidification of silicon thin films on low-k dielectrics for low temperature integration

We present the excimer laser crystallization of amorphous silicon on a low dielectric constant (low-k) insulator for very large scale integration monolithic 3D integration and demonstrate that low dielectric constant materials are suitable substrates for 3D integration through laser crystallization...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2014-12, Vol.105 (24)
Main Authors: Carta, Fabio, Gates, Stephen M., Limanov, Alexander B., Hlaing, Htay, Im, James S., Edelstein, Daniel C., Kymissis, Ioannis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c285t-9ad8843e60d31afa7183b03c2f8b6498bfd05b060e7681144e1b292d0f443ab93
cites cdi_FETCH-LOGICAL-c285t-9ad8843e60d31afa7183b03c2f8b6498bfd05b060e7681144e1b292d0f443ab93
container_end_page
container_issue 24
container_start_page
container_title Applied physics letters
container_volume 105
creator Carta, Fabio
Gates, Stephen M.
Limanov, Alexander B.
Hlaing, Htay
Im, James S.
Edelstein, Daniel C.
Kymissis, Ioannis
description We present the excimer laser crystallization of amorphous silicon on a low dielectric constant (low-k) insulator for very large scale integration monolithic 3D integration and demonstrate that low dielectric constant materials are suitable substrates for 3D integration through laser crystallization of silicon thin films. We crystallized 100 nm amorphous silicon on top of SiO2 and SiCOH (low-k) dielectrics, at different material thicknesses (1 μm, 0.75 μm, and 0.5 μm). The amorphous silicon crystallization on low-k dielectric requires 35% less laser energy than on an SiO2 dielectric. This difference is related to the thermal conductivity of the two materials, in agreement with one dimensional simulations of the crystallization process. We analyzed the morphology of the material through defect-enhanced microscopy, Raman spectroscopy, and X-ray diffraction analysis. SEM micrographs show that polycrystalline silicon is characterized by micron-long grains with an average width of 543 nm for the SiO2 sample and 570 nm for the low-k samples. Comparison of the Raman spectra does not show any major difference in film quality for the two different dielectrics, and polycrystalline silicon peaks are closely placed around 517 cm−1. From X-ray diffraction analysis, the material crystallized on SiO2 shows a preferential (111) crystal orientation. In the SiCOH case, the 111 peak strength decreases dramatically and samples do not show preferential crystal orientation. A 1D finite element method simulation of the crystallization process on a back end of line structure shows that copper (Cu) damascene interconnects reach a temperature of 70 °C or lower with a 0.5 μm dielectric layer between the Cu and the molten Si layer, a favorable condition for monolithic 3D integration.
doi_str_mv 10.1063/1.4904938
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22395545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126489093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-9ad8843e60d31afa7183b03c2f8b6498bfd05b060e7681144e1b292d0f443ab93</originalsourceid><addsrcrecordid>eNpFkE9LAzEUxIMoWKsHv0HAk4fVvCS7TY5S_AcFD-o5ZLOJTU03NUkRv72pLXiaN49hGH4IXQK5AdKxW7jhknDJxBGaAJnNGgYgjtGEEMKaTrZwis5yXlXbUsYmKLzar60di9cBB11sqppj8IN33uji44ijw9kHb-pZln7Ezod1xtWF-N184sHbYE1J3mTsYtp9cbHrTa0q22SxH4v9SH9V5-jE6ZDtxUGn6P3h_m3-1CxeHp_nd4vGUNGWRupBCM5sRwYG2ukZCNYTZqgTfcel6N1A2p50xM46AcC5hZ5KOhDHOdO9ZFN0te-NuXiVjS_WLOv-se5UlDLZtrz9T21SrAxyUau4TWMdpijQjgtJJKup633KpJhzsk5tkl_r9KOAqB1yBeqAnP0CfT9zgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126489093</pqid></control><display><type>article</type><title>Sequential lateral solidification of silicon thin films on low-k dielectrics for low temperature integration</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Carta, Fabio ; Gates, Stephen M. ; Limanov, Alexander B. ; Hlaing, Htay ; Im, James S. ; Edelstein, Daniel C. ; Kymissis, Ioannis</creator><creatorcontrib>Carta, Fabio ; Gates, Stephen M. ; Limanov, Alexander B. ; Hlaing, Htay ; Im, James S. ; Edelstein, Daniel C. ; Kymissis, Ioannis</creatorcontrib><description>We present the excimer laser crystallization of amorphous silicon on a low dielectric constant (low-k) insulator for very large scale integration monolithic 3D integration and demonstrate that low dielectric constant materials are suitable substrates for 3D integration through laser crystallization of silicon thin films. We crystallized 100 nm amorphous silicon on top of SiO2 and SiCOH (low-k) dielectrics, at different material thicknesses (1 μm, 0.75 μm, and 0.5 μm). The amorphous silicon crystallization on low-k dielectric requires 35% less laser energy than on an SiO2 dielectric. This difference is related to the thermal conductivity of the two materials, in agreement with one dimensional simulations of the crystallization process. We analyzed the morphology of the material through defect-enhanced microscopy, Raman spectroscopy, and X-ray diffraction analysis. SEM micrographs show that polycrystalline silicon is characterized by micron-long grains with an average width of 543 nm for the SiO2 sample and 570 nm for the low-k samples. Comparison of the Raman spectra does not show any major difference in film quality for the two different dielectrics, and polycrystalline silicon peaks are closely placed around 517 cm−1. From X-ray diffraction analysis, the material crystallized on SiO2 shows a preferential (111) crystal orientation. In the SiCOH case, the 111 peak strength decreases dramatically and samples do not show preferential crystal orientation. A 1D finite element method simulation of the crystallization process on a back end of line structure shows that copper (Cu) damascene interconnects reach a temperature of 70 °C or lower with a 0.5 μm dielectric layer between the Cu and the molten Si layer, a favorable condition for monolithic 3D integration.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4904938</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amorphous silicon ; Applied physics ; Computer simulation ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; COPPER ; Crystal structure ; CRYSTALLIZATION ; DIELECTRIC MATERIALS ; EXCIMER LASERS ; Excimers ; FINITE ELEMENT METHOD ; Lasers ; LAYERS ; Low temperature ; MORPHOLOGY ; PERMITTIVITY ; Photomicrographs ; Photovoltaic cells ; POLYCRYSTALS ; RAMAN SPECTRA ; RAMAN SPECTROSCOPY ; SCANNING ELECTRON MICROSCOPY ; SILICON ; Silicon dioxide ; Silicon films ; SILICON OXIDES ; SOLIDIFICATION ; Spectrum analysis ; SUBSTRATES ; THERMAL CONDUCTIVITY ; THIN FILMS ; Very large scale integration ; X ray spectra ; X-RAY DIFFRACTION</subject><ispartof>Applied physics letters, 2014-12, Vol.105 (24)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-9ad8843e60d31afa7183b03c2f8b6498bfd05b060e7681144e1b292d0f443ab93</citedby><cites>FETCH-LOGICAL-c285t-9ad8843e60d31afa7183b03c2f8b6498bfd05b060e7681144e1b292d0f443ab93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,782,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22395545$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carta, Fabio</creatorcontrib><creatorcontrib>Gates, Stephen M.</creatorcontrib><creatorcontrib>Limanov, Alexander B.</creatorcontrib><creatorcontrib>Hlaing, Htay</creatorcontrib><creatorcontrib>Im, James S.</creatorcontrib><creatorcontrib>Edelstein, Daniel C.</creatorcontrib><creatorcontrib>Kymissis, Ioannis</creatorcontrib><title>Sequential lateral solidification of silicon thin films on low-k dielectrics for low temperature integration</title><title>Applied physics letters</title><description>We present the excimer laser crystallization of amorphous silicon on a low dielectric constant (low-k) insulator for very large scale integration monolithic 3D integration and demonstrate that low dielectric constant materials are suitable substrates for 3D integration through laser crystallization of silicon thin films. We crystallized 100 nm amorphous silicon on top of SiO2 and SiCOH (low-k) dielectrics, at different material thicknesses (1 μm, 0.75 μm, and 0.5 μm). The amorphous silicon crystallization on low-k dielectric requires 35% less laser energy than on an SiO2 dielectric. This difference is related to the thermal conductivity of the two materials, in agreement with one dimensional simulations of the crystallization process. We analyzed the morphology of the material through defect-enhanced microscopy, Raman spectroscopy, and X-ray diffraction analysis. SEM micrographs show that polycrystalline silicon is characterized by micron-long grains with an average width of 543 nm for the SiO2 sample and 570 nm for the low-k samples. Comparison of the Raman spectra does not show any major difference in film quality for the two different dielectrics, and polycrystalline silicon peaks are closely placed around 517 cm−1. From X-ray diffraction analysis, the material crystallized on SiO2 shows a preferential (111) crystal orientation. In the SiCOH case, the 111 peak strength decreases dramatically and samples do not show preferential crystal orientation. A 1D finite element method simulation of the crystallization process on a back end of line structure shows that copper (Cu) damascene interconnects reach a temperature of 70 °C or lower with a 0.5 μm dielectric layer between the Cu and the molten Si layer, a favorable condition for monolithic 3D integration.</description><subject>Amorphous silicon</subject><subject>Applied physics</subject><subject>Computer simulation</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>COPPER</subject><subject>Crystal structure</subject><subject>CRYSTALLIZATION</subject><subject>DIELECTRIC MATERIALS</subject><subject>EXCIMER LASERS</subject><subject>Excimers</subject><subject>FINITE ELEMENT METHOD</subject><subject>Lasers</subject><subject>LAYERS</subject><subject>Low temperature</subject><subject>MORPHOLOGY</subject><subject>PERMITTIVITY</subject><subject>Photomicrographs</subject><subject>Photovoltaic cells</subject><subject>POLYCRYSTALS</subject><subject>RAMAN SPECTRA</subject><subject>RAMAN SPECTROSCOPY</subject><subject>SCANNING ELECTRON MICROSCOPY</subject><subject>SILICON</subject><subject>Silicon dioxide</subject><subject>Silicon films</subject><subject>SILICON OXIDES</subject><subject>SOLIDIFICATION</subject><subject>Spectrum analysis</subject><subject>SUBSTRATES</subject><subject>THERMAL CONDUCTIVITY</subject><subject>THIN FILMS</subject><subject>Very large scale integration</subject><subject>X ray spectra</subject><subject>X-RAY DIFFRACTION</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEUxIMoWKsHv0HAk4fVvCS7TY5S_AcFD-o5ZLOJTU03NUkRv72pLXiaN49hGH4IXQK5AdKxW7jhknDJxBGaAJnNGgYgjtGEEMKaTrZwis5yXlXbUsYmKLzar60di9cBB11sqppj8IN33uji44ijw9kHb-pZln7Ezod1xtWF-N184sHbYE1J3mTsYtp9cbHrTa0q22SxH4v9SH9V5-jE6ZDtxUGn6P3h_m3-1CxeHp_nd4vGUNGWRupBCM5sRwYG2ukZCNYTZqgTfcel6N1A2p50xM46AcC5hZ5KOhDHOdO9ZFN0te-NuXiVjS_WLOv-se5UlDLZtrz9T21SrAxyUau4TWMdpijQjgtJJKup633KpJhzsk5tkl_r9KOAqB1yBeqAnP0CfT9zgA</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Carta, Fabio</creator><creator>Gates, Stephen M.</creator><creator>Limanov, Alexander B.</creator><creator>Hlaing, Htay</creator><creator>Im, James S.</creator><creator>Edelstein, Daniel C.</creator><creator>Kymissis, Ioannis</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20141215</creationdate><title>Sequential lateral solidification of silicon thin films on low-k dielectrics for low temperature integration</title><author>Carta, Fabio ; Gates, Stephen M. ; Limanov, Alexander B. ; Hlaing, Htay ; Im, James S. ; Edelstein, Daniel C. ; Kymissis, Ioannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-9ad8843e60d31afa7183b03c2f8b6498bfd05b060e7681144e1b292d0f443ab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amorphous silicon</topic><topic>Applied physics</topic><topic>Computer simulation</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>COPPER</topic><topic>Crystal structure</topic><topic>CRYSTALLIZATION</topic><topic>DIELECTRIC MATERIALS</topic><topic>EXCIMER LASERS</topic><topic>Excimers</topic><topic>FINITE ELEMENT METHOD</topic><topic>Lasers</topic><topic>LAYERS</topic><topic>Low temperature</topic><topic>MORPHOLOGY</topic><topic>PERMITTIVITY</topic><topic>Photomicrographs</topic><topic>Photovoltaic cells</topic><topic>POLYCRYSTALS</topic><topic>RAMAN SPECTRA</topic><topic>RAMAN SPECTROSCOPY</topic><topic>SCANNING ELECTRON MICROSCOPY</topic><topic>SILICON</topic><topic>Silicon dioxide</topic><topic>Silicon films</topic><topic>SILICON OXIDES</topic><topic>SOLIDIFICATION</topic><topic>Spectrum analysis</topic><topic>SUBSTRATES</topic><topic>THERMAL CONDUCTIVITY</topic><topic>THIN FILMS</topic><topic>Very large scale integration</topic><topic>X ray spectra</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carta, Fabio</creatorcontrib><creatorcontrib>Gates, Stephen M.</creatorcontrib><creatorcontrib>Limanov, Alexander B.</creatorcontrib><creatorcontrib>Hlaing, Htay</creatorcontrib><creatorcontrib>Im, James S.</creatorcontrib><creatorcontrib>Edelstein, Daniel C.</creatorcontrib><creatorcontrib>Kymissis, Ioannis</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carta, Fabio</au><au>Gates, Stephen M.</au><au>Limanov, Alexander B.</au><au>Hlaing, Htay</au><au>Im, James S.</au><au>Edelstein, Daniel C.</au><au>Kymissis, Ioannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential lateral solidification of silicon thin films on low-k dielectrics for low temperature integration</atitle><jtitle>Applied physics letters</jtitle><date>2014-12-15</date><risdate>2014</risdate><volume>105</volume><issue>24</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We present the excimer laser crystallization of amorphous silicon on a low dielectric constant (low-k) insulator for very large scale integration monolithic 3D integration and demonstrate that low dielectric constant materials are suitable substrates for 3D integration through laser crystallization of silicon thin films. We crystallized 100 nm amorphous silicon on top of SiO2 and SiCOH (low-k) dielectrics, at different material thicknesses (1 μm, 0.75 μm, and 0.5 μm). The amorphous silicon crystallization on low-k dielectric requires 35% less laser energy than on an SiO2 dielectric. This difference is related to the thermal conductivity of the two materials, in agreement with one dimensional simulations of the crystallization process. We analyzed the morphology of the material through defect-enhanced microscopy, Raman spectroscopy, and X-ray diffraction analysis. SEM micrographs show that polycrystalline silicon is characterized by micron-long grains with an average width of 543 nm for the SiO2 sample and 570 nm for the low-k samples. Comparison of the Raman spectra does not show any major difference in film quality for the two different dielectrics, and polycrystalline silicon peaks are closely placed around 517 cm−1. From X-ray diffraction analysis, the material crystallized on SiO2 shows a preferential (111) crystal orientation. In the SiCOH case, the 111 peak strength decreases dramatically and samples do not show preferential crystal orientation. A 1D finite element method simulation of the crystallization process on a back end of line structure shows that copper (Cu) damascene interconnects reach a temperature of 70 °C or lower with a 0.5 μm dielectric layer between the Cu and the molten Si layer, a favorable condition for monolithic 3D integration.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4904938</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2014-12, Vol.105 (24)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22395545
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Amorphous silicon
Applied physics
Computer simulation
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
COPPER
Crystal structure
CRYSTALLIZATION
DIELECTRIC MATERIALS
EXCIMER LASERS
Excimers
FINITE ELEMENT METHOD
Lasers
LAYERS
Low temperature
MORPHOLOGY
PERMITTIVITY
Photomicrographs
Photovoltaic cells
POLYCRYSTALS
RAMAN SPECTRA
RAMAN SPECTROSCOPY
SCANNING ELECTRON MICROSCOPY
SILICON
Silicon dioxide
Silicon films
SILICON OXIDES
SOLIDIFICATION
Spectrum analysis
SUBSTRATES
THERMAL CONDUCTIVITY
THIN FILMS
Very large scale integration
X ray spectra
X-RAY DIFFRACTION
title Sequential lateral solidification of silicon thin films on low-k dielectrics for low temperature integration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20lateral%20solidification%20of%20silicon%20thin%20films%20on%20low-k%20dielectrics%20for%20low%20temperature%20integration&rft.jtitle=Applied%20physics%20letters&rft.au=Carta,%20Fabio&rft.date=2014-12-15&rft.volume=105&rft.issue=24&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4904938&rft_dat=%3Cproquest_osti_%3E2126489093%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-9ad8843e60d31afa7183b03c2f8b6498bfd05b060e7681144e1b292d0f443ab93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126489093&rft_id=info:pmid/&rfr_iscdi=true