Loading…
Large area strain analysis using scanning transmission electron microscopy across multiple images
Here, we apply revolving scanning transmission electron microscopy to measure lattice strain across a sample using a single reference area. To do so, we remove image distortion introduced by sample drift, which usually restricts strain analysis to a single image. Overcoming this challenge, we show t...
Saved in:
Published in: | Applied physics letters 2015-01, Vol.106 (1) |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c386t-e8a1ee57bd8e7a0a6f83ccd9e60c19ef69d8698c7724aafe00f5f2166b2248573 |
---|---|
cites | cdi_FETCH-LOGICAL-c386t-e8a1ee57bd8e7a0a6f83ccd9e60c19ef69d8698c7724aafe00f5f2166b2248573 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 106 |
creator | Oni, A. A. Sang, X. Raju, S. V. Dumpala, S. Broderick, S. Kumar, A. Sinnott, S. Saxena, S. Rajan, K. LeBeau, J. M. |
description | Here, we apply revolving scanning transmission electron microscopy to measure lattice strain across a sample using a single reference area. To do so, we remove image distortion introduced by sample drift, which usually restricts strain analysis to a single image. Overcoming this challenge, we show that it is possible to use strain reference areas elsewhere in the sample, thereby enabling reliable strain mapping across large areas. As a prototypical example, we determine the strain present within the microstructure of a Ni-based superalloy directly from atom column positions as well as geometric phase analysis. While maintaining atomic resolution, we quantify strain within nanoscale regions and demonstrate that large, unit-cell level strain fluctuations are present within the intermetallic phase. |
doi_str_mv | 10.1063/1.4905368 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22395635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124947202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-e8a1ee57bd8e7a0a6f83ccd9e60c19ef69d8698c7724aafe00f5f2166b2248573</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EEqVw4B9Y4sQhxY_4dUQVL6kSFzhbrrsprhKneJND_z0pVOK032pGq50h5JazBWdaPvBF7ZiS2p6RGWfGVJJze05mjDFZaaf4JblC3E2rElLOSFiFsgUaCgSKQwkp05BDe8CEdMSUtxRjyPkIk5qxS4ipzxRaiEOZoEux9Bj7_YGGIyHtxnZI-xZo6sIW8JpcNKFFuDnNOfl8fvpYvlar95e35eOqitLqoQIbOIAy640FE1jQjZUxbhxoFrmDRruN1c5GY0QdQgOMNaoRXOu1ELVVRs7J3d_dHofkMaYB4lfsc54e9UJIp7RU_6596b9HwMHv-rFMidELLmpXG8HE5Lr_c_0mKtD4fZnSlIPnzB979tyfepY_tXhwmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124947202</pqid></control><display><type>article</type><title>Large area strain analysis using scanning transmission electron microscopy across multiple images</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Oni, A. A. ; Sang, X. ; Raju, S. V. ; Dumpala, S. ; Broderick, S. ; Kumar, A. ; Sinnott, S. ; Saxena, S. ; Rajan, K. ; LeBeau, J. M.</creator><creatorcontrib>Oni, A. A. ; Sang, X. ; Raju, S. V. ; Dumpala, S. ; Broderick, S. ; Kumar, A. ; Sinnott, S. ; Saxena, S. ; Rajan, K. ; LeBeau, J. M.</creatorcontrib><description>Here, we apply revolving scanning transmission electron microscopy to measure lattice strain across a sample using a single reference area. To do so, we remove image distortion introduced by sample drift, which usually restricts strain analysis to a single image. Overcoming this challenge, we show that it is possible to use strain reference areas elsewhere in the sample, thereby enabling reliable strain mapping across large areas. As a prototypical example, we determine the strain present within the microstructure of a Ni-based superalloy directly from atom column positions as well as geometric phase analysis. While maintaining atomic resolution, we quantify strain within nanoscale regions and demonstrate that large, unit-cell level strain fluctuations are present within the intermetallic phase.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4905368</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; ATOMS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; FLUCTUATIONS ; Image transmission ; Intermetallic phases ; Lattice strain ; MAPPING ; MICROSTRUCTURE ; NANOSTRUCTURES ; Nickel base alloys ; PHASE STUDIES ; RESOLUTION ; SCANNING ELECTRON MICROSCOPY ; Scanning transmission electron microscopy ; Strain analysis ; STRAINS ; Superalloys ; TRANSMISSION ELECTRON MICROSCOPY ; Unit cell ; Variation</subject><ispartof>Applied physics letters, 2015-01, Vol.106 (1)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-e8a1ee57bd8e7a0a6f83ccd9e60c19ef69d8698c7724aafe00f5f2166b2248573</citedby><cites>FETCH-LOGICAL-c386t-e8a1ee57bd8e7a0a6f83ccd9e60c19ef69d8698c7724aafe00f5f2166b2248573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,782,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22395635$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Oni, A. A.</creatorcontrib><creatorcontrib>Sang, X.</creatorcontrib><creatorcontrib>Raju, S. V.</creatorcontrib><creatorcontrib>Dumpala, S.</creatorcontrib><creatorcontrib>Broderick, S.</creatorcontrib><creatorcontrib>Kumar, A.</creatorcontrib><creatorcontrib>Sinnott, S.</creatorcontrib><creatorcontrib>Saxena, S.</creatorcontrib><creatorcontrib>Rajan, K.</creatorcontrib><creatorcontrib>LeBeau, J. M.</creatorcontrib><title>Large area strain analysis using scanning transmission electron microscopy across multiple images</title><title>Applied physics letters</title><description>Here, we apply revolving scanning transmission electron microscopy to measure lattice strain across a sample using a single reference area. To do so, we remove image distortion introduced by sample drift, which usually restricts strain analysis to a single image. Overcoming this challenge, we show that it is possible to use strain reference areas elsewhere in the sample, thereby enabling reliable strain mapping across large areas. As a prototypical example, we determine the strain present within the microstructure of a Ni-based superalloy directly from atom column positions as well as geometric phase analysis. While maintaining atomic resolution, we quantify strain within nanoscale regions and demonstrate that large, unit-cell level strain fluctuations are present within the intermetallic phase.</description><subject>Applied physics</subject><subject>ATOMS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>FLUCTUATIONS</subject><subject>Image transmission</subject><subject>Intermetallic phases</subject><subject>Lattice strain</subject><subject>MAPPING</subject><subject>MICROSTRUCTURE</subject><subject>NANOSTRUCTURES</subject><subject>Nickel base alloys</subject><subject>PHASE STUDIES</subject><subject>RESOLUTION</subject><subject>SCANNING ELECTRON MICROSCOPY</subject><subject>Scanning transmission electron microscopy</subject><subject>Strain analysis</subject><subject>STRAINS</subject><subject>Superalloys</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><subject>Unit cell</subject><subject>Variation</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAQhC0EEqVw4B9Y4sQhxY_4dUQVL6kSFzhbrrsprhKneJND_z0pVOK032pGq50h5JazBWdaPvBF7ZiS2p6RGWfGVJJze05mjDFZaaf4JblC3E2rElLOSFiFsgUaCgSKQwkp05BDe8CEdMSUtxRjyPkIk5qxS4ipzxRaiEOZoEux9Bj7_YGGIyHtxnZI-xZo6sIW8JpcNKFFuDnNOfl8fvpYvlar95e35eOqitLqoQIbOIAy640FE1jQjZUxbhxoFrmDRruN1c5GY0QdQgOMNaoRXOu1ELVVRs7J3d_dHofkMaYB4lfsc54e9UJIp7RU_6596b9HwMHv-rFMidELLmpXG8HE5Lr_c_0mKtD4fZnSlIPnzB979tyfepY_tXhwmA</recordid><startdate>20150105</startdate><enddate>20150105</enddate><creator>Oni, A. A.</creator><creator>Sang, X.</creator><creator>Raju, S. V.</creator><creator>Dumpala, S.</creator><creator>Broderick, S.</creator><creator>Kumar, A.</creator><creator>Sinnott, S.</creator><creator>Saxena, S.</creator><creator>Rajan, K.</creator><creator>LeBeau, J. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150105</creationdate><title>Large area strain analysis using scanning transmission electron microscopy across multiple images</title><author>Oni, A. A. ; Sang, X. ; Raju, S. V. ; Dumpala, S. ; Broderick, S. ; Kumar, A. ; Sinnott, S. ; Saxena, S. ; Rajan, K. ; LeBeau, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-e8a1ee57bd8e7a0a6f83ccd9e60c19ef69d8698c7724aafe00f5f2166b2248573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied physics</topic><topic>ATOMS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>FLUCTUATIONS</topic><topic>Image transmission</topic><topic>Intermetallic phases</topic><topic>Lattice strain</topic><topic>MAPPING</topic><topic>MICROSTRUCTURE</topic><topic>NANOSTRUCTURES</topic><topic>Nickel base alloys</topic><topic>PHASE STUDIES</topic><topic>RESOLUTION</topic><topic>SCANNING ELECTRON MICROSCOPY</topic><topic>Scanning transmission electron microscopy</topic><topic>Strain analysis</topic><topic>STRAINS</topic><topic>Superalloys</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><topic>Unit cell</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oni, A. A.</creatorcontrib><creatorcontrib>Sang, X.</creatorcontrib><creatorcontrib>Raju, S. V.</creatorcontrib><creatorcontrib>Dumpala, S.</creatorcontrib><creatorcontrib>Broderick, S.</creatorcontrib><creatorcontrib>Kumar, A.</creatorcontrib><creatorcontrib>Sinnott, S.</creatorcontrib><creatorcontrib>Saxena, S.</creatorcontrib><creatorcontrib>Rajan, K.</creatorcontrib><creatorcontrib>LeBeau, J. M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oni, A. A.</au><au>Sang, X.</au><au>Raju, S. V.</au><au>Dumpala, S.</au><au>Broderick, S.</au><au>Kumar, A.</au><au>Sinnott, S.</au><au>Saxena, S.</au><au>Rajan, K.</au><au>LeBeau, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large area strain analysis using scanning transmission electron microscopy across multiple images</atitle><jtitle>Applied physics letters</jtitle><date>2015-01-05</date><risdate>2015</risdate><volume>106</volume><issue>1</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Here, we apply revolving scanning transmission electron microscopy to measure lattice strain across a sample using a single reference area. To do so, we remove image distortion introduced by sample drift, which usually restricts strain analysis to a single image. Overcoming this challenge, we show that it is possible to use strain reference areas elsewhere in the sample, thereby enabling reliable strain mapping across large areas. As a prototypical example, we determine the strain present within the microstructure of a Ni-based superalloy directly from atom column positions as well as geometric phase analysis. While maintaining atomic resolution, we quantify strain within nanoscale regions and demonstrate that large, unit-cell level strain fluctuations are present within the intermetallic phase.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4905368</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2015-01, Vol.106 (1) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22395635 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建) |
subjects | Applied physics ATOMS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS FLUCTUATIONS Image transmission Intermetallic phases Lattice strain MAPPING MICROSTRUCTURE NANOSTRUCTURES Nickel base alloys PHASE STUDIES RESOLUTION SCANNING ELECTRON MICROSCOPY Scanning transmission electron microscopy Strain analysis STRAINS Superalloys TRANSMISSION ELECTRON MICROSCOPY Unit cell Variation |
title | Large area strain analysis using scanning transmission electron microscopy across multiple images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20area%20strain%20analysis%20using%20scanning%20transmission%20electron%20microscopy%20across%20multiple%20images&rft.jtitle=Applied%20physics%20letters&rft.au=Oni,%20A.%20A.&rft.date=2015-01-05&rft.volume=106&rft.issue=1&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4905368&rft_dat=%3Cproquest_osti_%3E2124947202%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-e8a1ee57bd8e7a0a6f83ccd9e60c19ef69d8698c7724aafe00f5f2166b2248573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124947202&rft_id=info:pmid/&rfr_iscdi=true |