Loading…

Large area strain analysis using scanning transmission electron microscopy across multiple images

Here, we apply revolving scanning transmission electron microscopy to measure lattice strain across a sample using a single reference area. To do so, we remove image distortion introduced by sample drift, which usually restricts strain analysis to a single image. Overcoming this challenge, we show t...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2015-01, Vol.106 (1)
Main Authors: Oni, A. A., Sang, X., Raju, S. V., Dumpala, S., Broderick, S., Kumar, A., Sinnott, S., Saxena, S., Rajan, K., LeBeau, J. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-e8a1ee57bd8e7a0a6f83ccd9e60c19ef69d8698c7724aafe00f5f2166b2248573
cites cdi_FETCH-LOGICAL-c386t-e8a1ee57bd8e7a0a6f83ccd9e60c19ef69d8698c7724aafe00f5f2166b2248573
container_end_page
container_issue 1
container_start_page
container_title Applied physics letters
container_volume 106
creator Oni, A. A.
Sang, X.
Raju, S. V.
Dumpala, S.
Broderick, S.
Kumar, A.
Sinnott, S.
Saxena, S.
Rajan, K.
LeBeau, J. M.
description Here, we apply revolving scanning transmission electron microscopy to measure lattice strain across a sample using a single reference area. To do so, we remove image distortion introduced by sample drift, which usually restricts strain analysis to a single image. Overcoming this challenge, we show that it is possible to use strain reference areas elsewhere in the sample, thereby enabling reliable strain mapping across large areas. As a prototypical example, we determine the strain present within the microstructure of a Ni-based superalloy directly from atom column positions as well as geometric phase analysis. While maintaining atomic resolution, we quantify strain within nanoscale regions and demonstrate that large, unit-cell level strain fluctuations are present within the intermetallic phase.
doi_str_mv 10.1063/1.4905368
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22395635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124947202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-e8a1ee57bd8e7a0a6f83ccd9e60c19ef69d8698c7724aafe00f5f2166b2248573</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EEqVw4B9Y4sQhxY_4dUQVL6kSFzhbrrsprhKneJND_z0pVOK032pGq50h5JazBWdaPvBF7ZiS2p6RGWfGVJJze05mjDFZaaf4JblC3E2rElLOSFiFsgUaCgSKQwkp05BDe8CEdMSUtxRjyPkIk5qxS4ipzxRaiEOZoEux9Bj7_YGGIyHtxnZI-xZo6sIW8JpcNKFFuDnNOfl8fvpYvlar95e35eOqitLqoQIbOIAy640FE1jQjZUxbhxoFrmDRruN1c5GY0QdQgOMNaoRXOu1ELVVRs7J3d_dHofkMaYB4lfsc54e9UJIp7RU_6596b9HwMHv-rFMidELLmpXG8HE5Lr_c_0mKtD4fZnSlIPnzB979tyfepY_tXhwmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124947202</pqid></control><display><type>article</type><title>Large area strain analysis using scanning transmission electron microscopy across multiple images</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Oni, A. A. ; Sang, X. ; Raju, S. V. ; Dumpala, S. ; Broderick, S. ; Kumar, A. ; Sinnott, S. ; Saxena, S. ; Rajan, K. ; LeBeau, J. M.</creator><creatorcontrib>Oni, A. A. ; Sang, X. ; Raju, S. V. ; Dumpala, S. ; Broderick, S. ; Kumar, A. ; Sinnott, S. ; Saxena, S. ; Rajan, K. ; LeBeau, J. M.</creatorcontrib><description>Here, we apply revolving scanning transmission electron microscopy to measure lattice strain across a sample using a single reference area. To do so, we remove image distortion introduced by sample drift, which usually restricts strain analysis to a single image. Overcoming this challenge, we show that it is possible to use strain reference areas elsewhere in the sample, thereby enabling reliable strain mapping across large areas. As a prototypical example, we determine the strain present within the microstructure of a Ni-based superalloy directly from atom column positions as well as geometric phase analysis. While maintaining atomic resolution, we quantify strain within nanoscale regions and demonstrate that large, unit-cell level strain fluctuations are present within the intermetallic phase.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4905368</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; ATOMS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; FLUCTUATIONS ; Image transmission ; Intermetallic phases ; Lattice strain ; MAPPING ; MICROSTRUCTURE ; NANOSTRUCTURES ; Nickel base alloys ; PHASE STUDIES ; RESOLUTION ; SCANNING ELECTRON MICROSCOPY ; Scanning transmission electron microscopy ; Strain analysis ; STRAINS ; Superalloys ; TRANSMISSION ELECTRON MICROSCOPY ; Unit cell ; Variation</subject><ispartof>Applied physics letters, 2015-01, Vol.106 (1)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-e8a1ee57bd8e7a0a6f83ccd9e60c19ef69d8698c7724aafe00f5f2166b2248573</citedby><cites>FETCH-LOGICAL-c386t-e8a1ee57bd8e7a0a6f83ccd9e60c19ef69d8698c7724aafe00f5f2166b2248573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,782,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22395635$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Oni, A. A.</creatorcontrib><creatorcontrib>Sang, X.</creatorcontrib><creatorcontrib>Raju, S. V.</creatorcontrib><creatorcontrib>Dumpala, S.</creatorcontrib><creatorcontrib>Broderick, S.</creatorcontrib><creatorcontrib>Kumar, A.</creatorcontrib><creatorcontrib>Sinnott, S.</creatorcontrib><creatorcontrib>Saxena, S.</creatorcontrib><creatorcontrib>Rajan, K.</creatorcontrib><creatorcontrib>LeBeau, J. M.</creatorcontrib><title>Large area strain analysis using scanning transmission electron microscopy across multiple images</title><title>Applied physics letters</title><description>Here, we apply revolving scanning transmission electron microscopy to measure lattice strain across a sample using a single reference area. To do so, we remove image distortion introduced by sample drift, which usually restricts strain analysis to a single image. Overcoming this challenge, we show that it is possible to use strain reference areas elsewhere in the sample, thereby enabling reliable strain mapping across large areas. As a prototypical example, we determine the strain present within the microstructure of a Ni-based superalloy directly from atom column positions as well as geometric phase analysis. While maintaining atomic resolution, we quantify strain within nanoscale regions and demonstrate that large, unit-cell level strain fluctuations are present within the intermetallic phase.</description><subject>Applied physics</subject><subject>ATOMS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>FLUCTUATIONS</subject><subject>Image transmission</subject><subject>Intermetallic phases</subject><subject>Lattice strain</subject><subject>MAPPING</subject><subject>MICROSTRUCTURE</subject><subject>NANOSTRUCTURES</subject><subject>Nickel base alloys</subject><subject>PHASE STUDIES</subject><subject>RESOLUTION</subject><subject>SCANNING ELECTRON MICROSCOPY</subject><subject>Scanning transmission electron microscopy</subject><subject>Strain analysis</subject><subject>STRAINS</subject><subject>Superalloys</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><subject>Unit cell</subject><subject>Variation</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAQhC0EEqVw4B9Y4sQhxY_4dUQVL6kSFzhbrrsprhKneJND_z0pVOK032pGq50h5JazBWdaPvBF7ZiS2p6RGWfGVJJze05mjDFZaaf4JblC3E2rElLOSFiFsgUaCgSKQwkp05BDe8CEdMSUtxRjyPkIk5qxS4ipzxRaiEOZoEux9Bj7_YGGIyHtxnZI-xZo6sIW8JpcNKFFuDnNOfl8fvpYvlar95e35eOqitLqoQIbOIAy640FE1jQjZUxbhxoFrmDRruN1c5GY0QdQgOMNaoRXOu1ELVVRs7J3d_dHofkMaYB4lfsc54e9UJIp7RU_6596b9HwMHv-rFMidELLmpXG8HE5Lr_c_0mKtD4fZnSlIPnzB979tyfepY_tXhwmA</recordid><startdate>20150105</startdate><enddate>20150105</enddate><creator>Oni, A. A.</creator><creator>Sang, X.</creator><creator>Raju, S. V.</creator><creator>Dumpala, S.</creator><creator>Broderick, S.</creator><creator>Kumar, A.</creator><creator>Sinnott, S.</creator><creator>Saxena, S.</creator><creator>Rajan, K.</creator><creator>LeBeau, J. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150105</creationdate><title>Large area strain analysis using scanning transmission electron microscopy across multiple images</title><author>Oni, A. A. ; Sang, X. ; Raju, S. V. ; Dumpala, S. ; Broderick, S. ; Kumar, A. ; Sinnott, S. ; Saxena, S. ; Rajan, K. ; LeBeau, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-e8a1ee57bd8e7a0a6f83ccd9e60c19ef69d8698c7724aafe00f5f2166b2248573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied physics</topic><topic>ATOMS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>FLUCTUATIONS</topic><topic>Image transmission</topic><topic>Intermetallic phases</topic><topic>Lattice strain</topic><topic>MAPPING</topic><topic>MICROSTRUCTURE</topic><topic>NANOSTRUCTURES</topic><topic>Nickel base alloys</topic><topic>PHASE STUDIES</topic><topic>RESOLUTION</topic><topic>SCANNING ELECTRON MICROSCOPY</topic><topic>Scanning transmission electron microscopy</topic><topic>Strain analysis</topic><topic>STRAINS</topic><topic>Superalloys</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><topic>Unit cell</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oni, A. A.</creatorcontrib><creatorcontrib>Sang, X.</creatorcontrib><creatorcontrib>Raju, S. V.</creatorcontrib><creatorcontrib>Dumpala, S.</creatorcontrib><creatorcontrib>Broderick, S.</creatorcontrib><creatorcontrib>Kumar, A.</creatorcontrib><creatorcontrib>Sinnott, S.</creatorcontrib><creatorcontrib>Saxena, S.</creatorcontrib><creatorcontrib>Rajan, K.</creatorcontrib><creatorcontrib>LeBeau, J. M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oni, A. A.</au><au>Sang, X.</au><au>Raju, S. V.</au><au>Dumpala, S.</au><au>Broderick, S.</au><au>Kumar, A.</au><au>Sinnott, S.</au><au>Saxena, S.</au><au>Rajan, K.</au><au>LeBeau, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large area strain analysis using scanning transmission electron microscopy across multiple images</atitle><jtitle>Applied physics letters</jtitle><date>2015-01-05</date><risdate>2015</risdate><volume>106</volume><issue>1</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Here, we apply revolving scanning transmission electron microscopy to measure lattice strain across a sample using a single reference area. To do so, we remove image distortion introduced by sample drift, which usually restricts strain analysis to a single image. Overcoming this challenge, we show that it is possible to use strain reference areas elsewhere in the sample, thereby enabling reliable strain mapping across large areas. As a prototypical example, we determine the strain present within the microstructure of a Ni-based superalloy directly from atom column positions as well as geometric phase analysis. While maintaining atomic resolution, we quantify strain within nanoscale regions and demonstrate that large, unit-cell level strain fluctuations are present within the intermetallic phase.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4905368</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2015-01, Vol.106 (1)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22395635
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Applied physics
ATOMS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
FLUCTUATIONS
Image transmission
Intermetallic phases
Lattice strain
MAPPING
MICROSTRUCTURE
NANOSTRUCTURES
Nickel base alloys
PHASE STUDIES
RESOLUTION
SCANNING ELECTRON MICROSCOPY
Scanning transmission electron microscopy
Strain analysis
STRAINS
Superalloys
TRANSMISSION ELECTRON MICROSCOPY
Unit cell
Variation
title Large area strain analysis using scanning transmission electron microscopy across multiple images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20area%20strain%20analysis%20using%20scanning%20transmission%20electron%20microscopy%20across%20multiple%20images&rft.jtitle=Applied%20physics%20letters&rft.au=Oni,%20A.%20A.&rft.date=2015-01-05&rft.volume=106&rft.issue=1&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4905368&rft_dat=%3Cproquest_osti_%3E2124947202%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-e8a1ee57bd8e7a0a6f83ccd9e60c19ef69d8698c7724aafe00f5f2166b2248573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124947202&rft_id=info:pmid/&rfr_iscdi=true