Loading…

Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film

A method of creating tunable and programmable biaxial compressive strain in silicon nanomembranes (Si NMs) transferred onto a Kapton® HN polyimide film has been demonstrated. The programmable biaxial compressive strain (up to 0.54%) was generated utilizing a unique thermal property exhibited by the...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2015-05, Vol.106 (21)
Main Authors: Kim, Munho, Mi, Hongyi, Cho, Minkyu, Seo, Jung-Hun, Zhou, Weidong, Gong, Shaoqin, Ma, Zhenqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c285t-6bf672138bdf620d748b0b52b8bcddd87d93dc6a041afa81ae97e995f43e79ae3
cites cdi_FETCH-LOGICAL-c285t-6bf672138bdf620d748b0b52b8bcddd87d93dc6a041afa81ae97e995f43e79ae3
container_end_page
container_issue 21
container_start_page
container_title Applied physics letters
container_volume 106
creator Kim, Munho
Mi, Hongyi
Cho, Minkyu
Seo, Jung-Hun
Zhou, Weidong
Gong, Shaoqin
Ma, Zhenqiang
description A method of creating tunable and programmable biaxial compressive strain in silicon nanomembranes (Si NMs) transferred onto a Kapton® HN polyimide film has been demonstrated. The programmable biaxial compressive strain (up to 0.54%) was generated utilizing a unique thermal property exhibited by the Kapton HN film, namely, it shrinks from its original size when exposed to elevated temperatures. The correlation between the strain and the annealing temperature was carefully investigated using Raman spectroscopy and high resolution X-ray diffraction. It was found that various amounts of compressive strains can be obtained by controlling the thermal annealing temperatures. In addition, a numerical model was used to evaluate the strain distribution in the Si NM. This technique provides a viable approach to forming in-plane compressive strain in NMs and offers a practical platform for further studies in strain engineering.
doi_str_mv 10.1063/1.4922043
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22402490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124739438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-6bf672138bdf620d748b0b52b8bcddd87d93dc6a041afa81ae97e995f43e79ae3</originalsourceid><addsrcrecordid>eNpF0MlKBDEQBuAgCo6jB98g4MlDj9l6yVHEDQY8OJ5jlgpm6E7apEect7cHBU9F8X8UxY_QJSUrShp-Q1dCMkYEP0ILStq24pR2x2hBCOFVI2t6is5K2c5rzThfoPfNLmrTAzZBfwfd4xCrsdcRsE3DmKGU8AW4TFmHOGdY49eAo45pgMHkg5ujWDzkDA6nAxhTvw9DcIB96IdzdOJ1X-Diby7R28P95u6pWr88Pt_drivLunqqGuObllHeGecbRlwrOkNMzUxnrHOua53kzjaaCKq97qgG2YKUtRccWqmBL9HV791UpqCKDRPYD5tiBDspxgRhQpJ_Neb0uYMyqW3a5Tg_phhlouVS8G5W17_K5lRKBq_GHAad94oSdahZUfVXM_8B01ZvGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124739438</pqid></control><display><type>article</type><title>Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Kim, Munho ; Mi, Hongyi ; Cho, Minkyu ; Seo, Jung-Hun ; Zhou, Weidong ; Gong, Shaoqin ; Ma, Zhenqiang</creator><creatorcontrib>Kim, Munho ; Mi, Hongyi ; Cho, Minkyu ; Seo, Jung-Hun ; Zhou, Weidong ; Gong, Shaoqin ; Ma, Zhenqiang</creatorcontrib><description>A method of creating tunable and programmable biaxial compressive strain in silicon nanomembranes (Si NMs) transferred onto a Kapton® HN polyimide film has been demonstrated. The programmable biaxial compressive strain (up to 0.54%) was generated utilizing a unique thermal property exhibited by the Kapton HN film, namely, it shrinks from its original size when exposed to elevated temperatures. The correlation between the strain and the annealing temperature was carefully investigated using Raman spectroscopy and high resolution X-ray diffraction. It was found that various amounts of compressive strains can be obtained by controlling the thermal annealing temperatures. In addition, a numerical model was used to evaluate the strain distribution in the Si NM. This technique provides a viable approach to forming in-plane compressive strain in NMs and offers a practical platform for further studies in strain engineering.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4922043</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ANNEALING ; Applied physics ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Compressive properties ; High temperature ; Kapton (trademark) ; MATERIALS SCIENCE ; Mathematical models ; NANOSTRUCTURES ; POLYAMIDES ; Polyimide resins ; RAMAN SPECTROSCOPY ; SILICON ; Strain distribution ; STRAINS ; Temperature ; THERMODYNAMIC PROPERTIES ; X ray spectra ; X-RAY DIFFRACTION</subject><ispartof>Applied physics letters, 2015-05, Vol.106 (21)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-6bf672138bdf620d748b0b52b8bcddd87d93dc6a041afa81ae97e995f43e79ae3</citedby><cites>FETCH-LOGICAL-c285t-6bf672138bdf620d748b0b52b8bcddd87d93dc6a041afa81ae97e995f43e79ae3</cites><orcidid>0000-0002-0379-1886 ; 0000-0002-5039-2503 ; 0000-0002-0006-2063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,782,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22402490$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Munho</creatorcontrib><creatorcontrib>Mi, Hongyi</creatorcontrib><creatorcontrib>Cho, Minkyu</creatorcontrib><creatorcontrib>Seo, Jung-Hun</creatorcontrib><creatorcontrib>Zhou, Weidong</creatorcontrib><creatorcontrib>Gong, Shaoqin</creatorcontrib><creatorcontrib>Ma, Zhenqiang</creatorcontrib><title>Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film</title><title>Applied physics letters</title><description>A method of creating tunable and programmable biaxial compressive strain in silicon nanomembranes (Si NMs) transferred onto a Kapton® HN polyimide film has been demonstrated. The programmable biaxial compressive strain (up to 0.54%) was generated utilizing a unique thermal property exhibited by the Kapton HN film, namely, it shrinks from its original size when exposed to elevated temperatures. The correlation between the strain and the annealing temperature was carefully investigated using Raman spectroscopy and high resolution X-ray diffraction. It was found that various amounts of compressive strains can be obtained by controlling the thermal annealing temperatures. In addition, a numerical model was used to evaluate the strain distribution in the Si NM. This technique provides a viable approach to forming in-plane compressive strain in NMs and offers a practical platform for further studies in strain engineering.</description><subject>ANNEALING</subject><subject>Applied physics</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Compressive properties</subject><subject>High temperature</subject><subject>Kapton (trademark)</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical models</subject><subject>NANOSTRUCTURES</subject><subject>POLYAMIDES</subject><subject>Polyimide resins</subject><subject>RAMAN SPECTROSCOPY</subject><subject>SILICON</subject><subject>Strain distribution</subject><subject>STRAINS</subject><subject>Temperature</subject><subject>THERMODYNAMIC PROPERTIES</subject><subject>X ray spectra</subject><subject>X-RAY DIFFRACTION</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpF0MlKBDEQBuAgCo6jB98g4MlDj9l6yVHEDQY8OJ5jlgpm6E7apEect7cHBU9F8X8UxY_QJSUrShp-Q1dCMkYEP0ILStq24pR2x2hBCOFVI2t6is5K2c5rzThfoPfNLmrTAzZBfwfd4xCrsdcRsE3DmKGU8AW4TFmHOGdY49eAo45pgMHkg5ujWDzkDA6nAxhTvw9DcIB96IdzdOJ1X-Diby7R28P95u6pWr88Pt_drivLunqqGuObllHeGecbRlwrOkNMzUxnrHOua53kzjaaCKq97qgG2YKUtRccWqmBL9HV791UpqCKDRPYD5tiBDspxgRhQpJ_Neb0uYMyqW3a5Tg_phhlouVS8G5W17_K5lRKBq_GHAad94oSdahZUfVXM_8B01ZvGg</recordid><startdate>20150525</startdate><enddate>20150525</enddate><creator>Kim, Munho</creator><creator>Mi, Hongyi</creator><creator>Cho, Minkyu</creator><creator>Seo, Jung-Hun</creator><creator>Zhou, Weidong</creator><creator>Gong, Shaoqin</creator><creator>Ma, Zhenqiang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0379-1886</orcidid><orcidid>https://orcid.org/0000-0002-5039-2503</orcidid><orcidid>https://orcid.org/0000-0002-0006-2063</orcidid></search><sort><creationdate>20150525</creationdate><title>Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film</title><author>Kim, Munho ; Mi, Hongyi ; Cho, Minkyu ; Seo, Jung-Hun ; Zhou, Weidong ; Gong, Shaoqin ; Ma, Zhenqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-6bf672138bdf620d748b0b52b8bcddd87d93dc6a041afa81ae97e995f43e79ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ANNEALING</topic><topic>Applied physics</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Compressive properties</topic><topic>High temperature</topic><topic>Kapton (trademark)</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical models</topic><topic>NANOSTRUCTURES</topic><topic>POLYAMIDES</topic><topic>Polyimide resins</topic><topic>RAMAN SPECTROSCOPY</topic><topic>SILICON</topic><topic>Strain distribution</topic><topic>STRAINS</topic><topic>Temperature</topic><topic>THERMODYNAMIC PROPERTIES</topic><topic>X ray spectra</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Munho</creatorcontrib><creatorcontrib>Mi, Hongyi</creatorcontrib><creatorcontrib>Cho, Minkyu</creatorcontrib><creatorcontrib>Seo, Jung-Hun</creatorcontrib><creatorcontrib>Zhou, Weidong</creatorcontrib><creatorcontrib>Gong, Shaoqin</creatorcontrib><creatorcontrib>Ma, Zhenqiang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Munho</au><au>Mi, Hongyi</au><au>Cho, Minkyu</au><au>Seo, Jung-Hun</au><au>Zhou, Weidong</au><au>Gong, Shaoqin</au><au>Ma, Zhenqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film</atitle><jtitle>Applied physics letters</jtitle><date>2015-05-25</date><risdate>2015</risdate><volume>106</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>A method of creating tunable and programmable biaxial compressive strain in silicon nanomembranes (Si NMs) transferred onto a Kapton® HN polyimide film has been demonstrated. The programmable biaxial compressive strain (up to 0.54%) was generated utilizing a unique thermal property exhibited by the Kapton HN film, namely, it shrinks from its original size when exposed to elevated temperatures. The correlation between the strain and the annealing temperature was carefully investigated using Raman spectroscopy and high resolution X-ray diffraction. It was found that various amounts of compressive strains can be obtained by controlling the thermal annealing temperatures. In addition, a numerical model was used to evaluate the strain distribution in the Si NM. This technique provides a viable approach to forming in-plane compressive strain in NMs and offers a practical platform for further studies in strain engineering.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4922043</doi><orcidid>https://orcid.org/0000-0002-0379-1886</orcidid><orcidid>https://orcid.org/0000-0002-5039-2503</orcidid><orcidid>https://orcid.org/0000-0002-0006-2063</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2015-05, Vol.106 (21)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22402490
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects ANNEALING
Applied physics
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Compressive properties
High temperature
Kapton (trademark)
MATERIALS SCIENCE
Mathematical models
NANOSTRUCTURES
POLYAMIDES
Polyimide resins
RAMAN SPECTROSCOPY
SILICON
Strain distribution
STRAINS
Temperature
THERMODYNAMIC PROPERTIES
X ray spectra
X-RAY DIFFRACTION
title Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20biaxial%20in-plane%20compressive%20strain%20in%20a%20Si%20nanomembrane%20transferred%20on%20a%20polyimide%20film&rft.jtitle=Applied%20physics%20letters&rft.au=Kim,%20Munho&rft.date=2015-05-25&rft.volume=106&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4922043&rft_dat=%3Cproquest_osti_%3E2124739438%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-6bf672138bdf620d748b0b52b8bcddd87d93dc6a041afa81ae97e995f43e79ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124739438&rft_id=info:pmid/&rfr_iscdi=true