Loading…
Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems
We study the coupling induced destabilization in an array of identical oscillators coupled in a ring structure where the number of oscillators in the ring is large. The coupling structure includes different types of interactions with several next neighbors. We derive an amplitude equation of Ginzbur...
Saved in:
Published in: | Chaos (Woodbury, N.Y.) N.Y.), 2015-03, Vol.25 (3), p.033113-033113 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c313t-714e7d76edc51ef8cae96f5f6db5c485c2aa73279263d27b4d9d6437a90ebb603 |
---|---|
cites | cdi_FETCH-LOGICAL-c313t-714e7d76edc51ef8cae96f5f6db5c485c2aa73279263d27b4d9d6437a90ebb603 |
container_end_page | 033113 |
container_issue | 3 |
container_start_page | 033113 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 25 |
creator | Yanchuk, S Perlikowski, P Wolfrum, M Stefański, A Kapitaniak, T |
description | We study the coupling induced destabilization in an array of identical oscillators coupled in a ring structure where the number of oscillators in the ring is large. The coupling structure includes different types of interactions with several next neighbors. We derive an amplitude equation of Ginzburg-Landau type, which describes the destabilization of a uniform stationary state and close-by solutions in the limit of a large number of nodes. Studying numerically an example of unidirectionally coupled Duffing oscillators, we observe a coupling induced transition to collective spatio-temporal chaos, which can be understood using the derived amplitude equations. |
doi_str_mv | 10.1063/1.4915941 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22402540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669832265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-714e7d76edc51ef8cae96f5f6db5c485c2aa73279263d27b4d9d6437a90ebb603</originalsourceid><addsrcrecordid>eNo90MtKxTAQBuAgiveFLyABN7qo5t52KeINBDcK7kKaTDHSNjXTCuft7eEcXc0wfDMMPyFnnF1zZuQNv1Y117XiO-SQs6ouSlOJ3XWvVcE1YwfkCPGLMcaF1PvkQOhKSiX1Ifm47ccuTnMACt-zm2IakLYpU5-6DvwUf4DiuJ4XE_Rjyq6jYTW4PnqkcaAuZ7dCmtplYR47CBRXuEg8IXut6xBOt_WYvD_cv909FS-vj893ty-Fl1xORckVlKE0ELzm0FbeQW1a3ZrQaK8q7YVzpRRlLYwMomxUqINRsnQ1g6YxTB6Ti83dhFO06OME_tOnYViet0IoJrRaq8uNGnP6ngEn20f00HVugDSj5cbUlRTC6IVebajPCTFDa8cce5dXljO7jttyu417sefbs3PTQ_iXf_nKX9WBemk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669832265</pqid></control><display><type>article</type><title>Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Yanchuk, S ; Perlikowski, P ; Wolfrum, M ; Stefański, A ; Kapitaniak, T</creator><creatorcontrib>Yanchuk, S ; Perlikowski, P ; Wolfrum, M ; Stefański, A ; Kapitaniak, T</creatorcontrib><description>We study the coupling induced destabilization in an array of identical oscillators coupled in a ring structure where the number of oscillators in the ring is large. The coupling structure includes different types of interactions with several next neighbors. We derive an amplitude equation of Ginzburg-Landau type, which describes the destabilization of a uniform stationary state and close-by solutions in the limit of a large number of nodes. Studying numerically an example of unidirectionally coupled Duffing oscillators, we observe a coupling induced transition to collective spatio-temporal chaos, which can be understood using the derived amplitude equations.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4915941</identifier><identifier>PMID: 25833435</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; AMPLITUDES ; CHAOS THEORY ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer Simulation ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; COUPLING ; EQUATIONS ; Feedback ; GINZBURG-LANDAU THEORY ; INTERACTIONS ; MATHEMATICAL SOLUTIONS ; Models, Theoretical ; Nonlinear Dynamics ; OSCILLATORS ; Oscillometry - methods ; SPACE DEPENDENCE ; Spatio-Temporal Analysis ; TIME DEPENDENCE</subject><ispartof>Chaos (Woodbury, N.Y.), 2015-03, Vol.25 (3), p.033113-033113</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-714e7d76edc51ef8cae96f5f6db5c485c2aa73279263d27b4d9d6437a90ebb603</citedby><cites>FETCH-LOGICAL-c313t-714e7d76edc51ef8cae96f5f6db5c485c2aa73279263d27b4d9d6437a90ebb603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25833435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22402540$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yanchuk, S</creatorcontrib><creatorcontrib>Perlikowski, P</creatorcontrib><creatorcontrib>Wolfrum, M</creatorcontrib><creatorcontrib>Stefański, A</creatorcontrib><creatorcontrib>Kapitaniak, T</creatorcontrib><title>Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We study the coupling induced destabilization in an array of identical oscillators coupled in a ring structure where the number of oscillators in the ring is large. The coupling structure includes different types of interactions with several next neighbors. We derive an amplitude equation of Ginzburg-Landau type, which describes the destabilization of a uniform stationary state and close-by solutions in the limit of a large number of nodes. Studying numerically an example of unidirectionally coupled Duffing oscillators, we observe a coupling induced transition to collective spatio-temporal chaos, which can be understood using the derived amplitude equations.</description><subject>Algorithms</subject><subject>AMPLITUDES</subject><subject>CHAOS THEORY</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer Simulation</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>COUPLING</subject><subject>EQUATIONS</subject><subject>Feedback</subject><subject>GINZBURG-LANDAU THEORY</subject><subject>INTERACTIONS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>Models, Theoretical</subject><subject>Nonlinear Dynamics</subject><subject>OSCILLATORS</subject><subject>Oscillometry - methods</subject><subject>SPACE DEPENDENCE</subject><subject>Spatio-Temporal Analysis</subject><subject>TIME DEPENDENCE</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo90MtKxTAQBuAgiveFLyABN7qo5t52KeINBDcK7kKaTDHSNjXTCuft7eEcXc0wfDMMPyFnnF1zZuQNv1Y117XiO-SQs6ouSlOJ3XWvVcE1YwfkCPGLMcaF1PvkQOhKSiX1Ifm47ccuTnMACt-zm2IakLYpU5-6DvwUf4DiuJ4XE_Rjyq6jYTW4PnqkcaAuZ7dCmtplYR47CBRXuEg8IXut6xBOt_WYvD_cv909FS-vj893ty-Fl1xORckVlKE0ELzm0FbeQW1a3ZrQaK8q7YVzpRRlLYwMomxUqINRsnQ1g6YxTB6Ti83dhFO06OME_tOnYViet0IoJrRaq8uNGnP6ngEn20f00HVugDSj5cbUlRTC6IVebajPCTFDa8cce5dXljO7jttyu417sefbs3PTQ_iXf_nKX9WBemk</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Yanchuk, S</creator><creator>Perlikowski, P</creator><creator>Wolfrum, M</creator><creator>Stefański, A</creator><creator>Kapitaniak, T</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20150301</creationdate><title>Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems</title><author>Yanchuk, S ; Perlikowski, P ; Wolfrum, M ; Stefański, A ; Kapitaniak, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-714e7d76edc51ef8cae96f5f6db5c485c2aa73279263d27b4d9d6437a90ebb603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>AMPLITUDES</topic><topic>CHAOS THEORY</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer Simulation</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>COUPLING</topic><topic>EQUATIONS</topic><topic>Feedback</topic><topic>GINZBURG-LANDAU THEORY</topic><topic>INTERACTIONS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>Models, Theoretical</topic><topic>Nonlinear Dynamics</topic><topic>OSCILLATORS</topic><topic>Oscillometry - methods</topic><topic>SPACE DEPENDENCE</topic><topic>Spatio-Temporal Analysis</topic><topic>TIME DEPENDENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yanchuk, S</creatorcontrib><creatorcontrib>Perlikowski, P</creatorcontrib><creatorcontrib>Wolfrum, M</creatorcontrib><creatorcontrib>Stefański, A</creatorcontrib><creatorcontrib>Kapitaniak, T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yanchuk, S</au><au>Perlikowski, P</au><au>Wolfrum, M</au><au>Stefański, A</au><au>Kapitaniak, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>25</volume><issue>3</issue><spage>033113</spage><epage>033113</epage><pages>033113-033113</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><abstract>We study the coupling induced destabilization in an array of identical oscillators coupled in a ring structure where the number of oscillators in the ring is large. The coupling structure includes different types of interactions with several next neighbors. We derive an amplitude equation of Ginzburg-Landau type, which describes the destabilization of a uniform stationary state and close-by solutions in the limit of a large number of nodes. Studying numerically an example of unidirectionally coupled Duffing oscillators, we observe a coupling induced transition to collective spatio-temporal chaos, which can be understood using the derived amplitude equations.</abstract><cop>United States</cop><pmid>25833435</pmid><doi>10.1063/1.4915941</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2015-03, Vol.25 (3), p.033113-033113 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_osti_scitechconnect_22402540 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Algorithms AMPLITUDES CHAOS THEORY CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computer Simulation CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY COUPLING EQUATIONS Feedback GINZBURG-LANDAU THEORY INTERACTIONS MATHEMATICAL SOLUTIONS Models, Theoretical Nonlinear Dynamics OSCILLATORS Oscillometry - methods SPACE DEPENDENCE Spatio-Temporal Analysis TIME DEPENDENCE |
title | Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amplitude%20equations%20for%20collective%20spatio-temporal%20dynamics%20in%20arrays%20of%20coupled%20systems&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Yanchuk,%20S&rft.date=2015-03-01&rft.volume=25&rft.issue=3&rft.spage=033113&rft.epage=033113&rft.pages=033113-033113&rft.issn=1054-1500&rft.eissn=1089-7682&rft_id=info:doi/10.1063/1.4915941&rft_dat=%3Cproquest_osti_%3E1669832265%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-714e7d76edc51ef8cae96f5f6db5c485c2aa73279263d27b4d9d6437a90ebb603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1669832265&rft_id=info:pmid/25833435&rfr_iscdi=true |