Loading…

Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems

We study the coupling induced destabilization in an array of identical oscillators coupled in a ring structure where the number of oscillators in the ring is large. The coupling structure includes different types of interactions with several next neighbors. We derive an amplitude equation of Ginzbur...

Full description

Saved in:
Bibliographic Details
Published in:Chaos (Woodbury, N.Y.) N.Y.), 2015-03, Vol.25 (3), p.033113-033113
Main Authors: Yanchuk, S, Perlikowski, P, Wolfrum, M, Stefański, A, Kapitaniak, T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-714e7d76edc51ef8cae96f5f6db5c485c2aa73279263d27b4d9d6437a90ebb603
cites cdi_FETCH-LOGICAL-c313t-714e7d76edc51ef8cae96f5f6db5c485c2aa73279263d27b4d9d6437a90ebb603
container_end_page 033113
container_issue 3
container_start_page 033113
container_title Chaos (Woodbury, N.Y.)
container_volume 25
creator Yanchuk, S
Perlikowski, P
Wolfrum, M
Stefański, A
Kapitaniak, T
description We study the coupling induced destabilization in an array of identical oscillators coupled in a ring structure where the number of oscillators in the ring is large. The coupling structure includes different types of interactions with several next neighbors. We derive an amplitude equation of Ginzburg-Landau type, which describes the destabilization of a uniform stationary state and close-by solutions in the limit of a large number of nodes. Studying numerically an example of unidirectionally coupled Duffing oscillators, we observe a coupling induced transition to collective spatio-temporal chaos, which can be understood using the derived amplitude equations.
doi_str_mv 10.1063/1.4915941
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22402540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669832265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-714e7d76edc51ef8cae96f5f6db5c485c2aa73279263d27b4d9d6437a90ebb603</originalsourceid><addsrcrecordid>eNo90MtKxTAQBuAgiveFLyABN7qo5t52KeINBDcK7kKaTDHSNjXTCuft7eEcXc0wfDMMPyFnnF1zZuQNv1Y117XiO-SQs6ouSlOJ3XWvVcE1YwfkCPGLMcaF1PvkQOhKSiX1Ifm47ccuTnMACt-zm2IakLYpU5-6DvwUf4DiuJ4XE_Rjyq6jYTW4PnqkcaAuZ7dCmtplYR47CBRXuEg8IXut6xBOt_WYvD_cv909FS-vj893ty-Fl1xORckVlKE0ELzm0FbeQW1a3ZrQaK8q7YVzpRRlLYwMomxUqINRsnQ1g6YxTB6Ti83dhFO06OME_tOnYViet0IoJrRaq8uNGnP6ngEn20f00HVugDSj5cbUlRTC6IVebajPCTFDa8cce5dXljO7jttyu417sefbs3PTQ_iXf_nKX9WBemk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669832265</pqid></control><display><type>article</type><title>Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Yanchuk, S ; Perlikowski, P ; Wolfrum, M ; Stefański, A ; Kapitaniak, T</creator><creatorcontrib>Yanchuk, S ; Perlikowski, P ; Wolfrum, M ; Stefański, A ; Kapitaniak, T</creatorcontrib><description>We study the coupling induced destabilization in an array of identical oscillators coupled in a ring structure where the number of oscillators in the ring is large. The coupling structure includes different types of interactions with several next neighbors. We derive an amplitude equation of Ginzburg-Landau type, which describes the destabilization of a uniform stationary state and close-by solutions in the limit of a large number of nodes. Studying numerically an example of unidirectionally coupled Duffing oscillators, we observe a coupling induced transition to collective spatio-temporal chaos, which can be understood using the derived amplitude equations.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4915941</identifier><identifier>PMID: 25833435</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; AMPLITUDES ; CHAOS THEORY ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer Simulation ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; COUPLING ; EQUATIONS ; Feedback ; GINZBURG-LANDAU THEORY ; INTERACTIONS ; MATHEMATICAL SOLUTIONS ; Models, Theoretical ; Nonlinear Dynamics ; OSCILLATORS ; Oscillometry - methods ; SPACE DEPENDENCE ; Spatio-Temporal Analysis ; TIME DEPENDENCE</subject><ispartof>Chaos (Woodbury, N.Y.), 2015-03, Vol.25 (3), p.033113-033113</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-714e7d76edc51ef8cae96f5f6db5c485c2aa73279263d27b4d9d6437a90ebb603</citedby><cites>FETCH-LOGICAL-c313t-714e7d76edc51ef8cae96f5f6db5c485c2aa73279263d27b4d9d6437a90ebb603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25833435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22402540$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yanchuk, S</creatorcontrib><creatorcontrib>Perlikowski, P</creatorcontrib><creatorcontrib>Wolfrum, M</creatorcontrib><creatorcontrib>Stefański, A</creatorcontrib><creatorcontrib>Kapitaniak, T</creatorcontrib><title>Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We study the coupling induced destabilization in an array of identical oscillators coupled in a ring structure where the number of oscillators in the ring is large. The coupling structure includes different types of interactions with several next neighbors. We derive an amplitude equation of Ginzburg-Landau type, which describes the destabilization of a uniform stationary state and close-by solutions in the limit of a large number of nodes. Studying numerically an example of unidirectionally coupled Duffing oscillators, we observe a coupling induced transition to collective spatio-temporal chaos, which can be understood using the derived amplitude equations.</description><subject>Algorithms</subject><subject>AMPLITUDES</subject><subject>CHAOS THEORY</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer Simulation</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>COUPLING</subject><subject>EQUATIONS</subject><subject>Feedback</subject><subject>GINZBURG-LANDAU THEORY</subject><subject>INTERACTIONS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>Models, Theoretical</subject><subject>Nonlinear Dynamics</subject><subject>OSCILLATORS</subject><subject>Oscillometry - methods</subject><subject>SPACE DEPENDENCE</subject><subject>Spatio-Temporal Analysis</subject><subject>TIME DEPENDENCE</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo90MtKxTAQBuAgiveFLyABN7qo5t52KeINBDcK7kKaTDHSNjXTCuft7eEcXc0wfDMMPyFnnF1zZuQNv1Y117XiO-SQs6ouSlOJ3XWvVcE1YwfkCPGLMcaF1PvkQOhKSiX1Ifm47ccuTnMACt-zm2IakLYpU5-6DvwUf4DiuJ4XE_Rjyq6jYTW4PnqkcaAuZ7dCmtplYR47CBRXuEg8IXut6xBOt_WYvD_cv909FS-vj893ty-Fl1xORckVlKE0ELzm0FbeQW1a3ZrQaK8q7YVzpRRlLYwMomxUqINRsnQ1g6YxTB6Ti83dhFO06OME_tOnYViet0IoJrRaq8uNGnP6ngEn20f00HVugDSj5cbUlRTC6IVebajPCTFDa8cce5dXljO7jttyu417sefbs3PTQ_iXf_nKX9WBemk</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Yanchuk, S</creator><creator>Perlikowski, P</creator><creator>Wolfrum, M</creator><creator>Stefański, A</creator><creator>Kapitaniak, T</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20150301</creationdate><title>Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems</title><author>Yanchuk, S ; Perlikowski, P ; Wolfrum, M ; Stefański, A ; Kapitaniak, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-714e7d76edc51ef8cae96f5f6db5c485c2aa73279263d27b4d9d6437a90ebb603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>AMPLITUDES</topic><topic>CHAOS THEORY</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer Simulation</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>COUPLING</topic><topic>EQUATIONS</topic><topic>Feedback</topic><topic>GINZBURG-LANDAU THEORY</topic><topic>INTERACTIONS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>Models, Theoretical</topic><topic>Nonlinear Dynamics</topic><topic>OSCILLATORS</topic><topic>Oscillometry - methods</topic><topic>SPACE DEPENDENCE</topic><topic>Spatio-Temporal Analysis</topic><topic>TIME DEPENDENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yanchuk, S</creatorcontrib><creatorcontrib>Perlikowski, P</creatorcontrib><creatorcontrib>Wolfrum, M</creatorcontrib><creatorcontrib>Stefański, A</creatorcontrib><creatorcontrib>Kapitaniak, T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yanchuk, S</au><au>Perlikowski, P</au><au>Wolfrum, M</au><au>Stefański, A</au><au>Kapitaniak, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>25</volume><issue>3</issue><spage>033113</spage><epage>033113</epage><pages>033113-033113</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><abstract>We study the coupling induced destabilization in an array of identical oscillators coupled in a ring structure where the number of oscillators in the ring is large. The coupling structure includes different types of interactions with several next neighbors. We derive an amplitude equation of Ginzburg-Landau type, which describes the destabilization of a uniform stationary state and close-by solutions in the limit of a large number of nodes. Studying numerically an example of unidirectionally coupled Duffing oscillators, we observe a coupling induced transition to collective spatio-temporal chaos, which can be understood using the derived amplitude equations.</abstract><cop>United States</cop><pmid>25833435</pmid><doi>10.1063/1.4915941</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2015-03, Vol.25 (3), p.033113-033113
issn 1054-1500
1089-7682
language eng
recordid cdi_osti_scitechconnect_22402540
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Algorithms
AMPLITUDES
CHAOS THEORY
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computer Simulation
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
COUPLING
EQUATIONS
Feedback
GINZBURG-LANDAU THEORY
INTERACTIONS
MATHEMATICAL SOLUTIONS
Models, Theoretical
Nonlinear Dynamics
OSCILLATORS
Oscillometry - methods
SPACE DEPENDENCE
Spatio-Temporal Analysis
TIME DEPENDENCE
title Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amplitude%20equations%20for%20collective%20spatio-temporal%20dynamics%20in%20arrays%20of%20coupled%20systems&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Yanchuk,%20S&rft.date=2015-03-01&rft.volume=25&rft.issue=3&rft.spage=033113&rft.epage=033113&rft.pages=033113-033113&rft.issn=1054-1500&rft.eissn=1089-7682&rft_id=info:doi/10.1063/1.4915941&rft_dat=%3Cproquest_osti_%3E1669832265%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-714e7d76edc51ef8cae96f5f6db5c485c2aa73279263d27b4d9d6437a90ebb603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1669832265&rft_id=info:pmid/25833435&rfr_iscdi=true