Loading…

Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments

We report measurements of the dissipation in the Superfluid helium high REynold number von Kármán flow experiment for different forcing conditions. Statistically steady flows are reached; they display a hysteretic behavior similar to what has been observed in a 1:4 scale water experiment. Our macros...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2014-12, Vol.26 (12)
Main Authors: Saint-Michel, B., Herbert, E., Salort, J., Baudet, C., Bon Mardion, M., Bonnay, P., Bourgoin, M., Castaing, B., Chevillard, L., Daviaud, F., Diribarne, P., Dubrulle, B., Gagne, Y., Gibert, M., Girard, A., Hébral, B., Lehner, Th, Rousset, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-715de7d870a928f1c209b4fe751cf4f63f480f99defb82e2431143544ad7a38e3
cites cdi_FETCH-LOGICAL-c354t-715de7d870a928f1c209b4fe751cf4f63f480f99defb82e2431143544ad7a38e3
container_end_page
container_issue 12
container_start_page
container_title Physics of fluids (1994)
container_volume 26
creator Saint-Michel, B.
Herbert, E.
Salort, J.
Baudet, C.
Bon Mardion, M.
Bonnay, P.
Bourgoin, M.
Castaing, B.
Chevillard, L.
Daviaud, F.
Diribarne, P.
Dubrulle, B.
Gagne, Y.
Gibert, M.
Girard, A.
Hébral, B.
Lehner, Th
Rousset, B.
description We report measurements of the dissipation in the Superfluid helium high REynold number von Kármán flow experiment for different forcing conditions. Statistically steady flows are reached; they display a hysteretic behavior similar to what has been observed in a 1:4 scale water experiment. Our macroscopical measurements indicate no noticeable difference between classical and superfluid flows, thereby providing evidence of the same dissipation scaling laws in the two phases. A detailed study of the evolution of the hysteresis cycle with the Reynolds number supports the idea that the stability of the steady states of classical turbulence in this closed flow is partly governed by the dissipative scales. It also supports the idea that the normal and the superfluid components at these temperatures (1.6 K) are locked down to the dissipative length scale.
doi_str_mv 10.1063/1.4904378
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22403204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126491448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-715de7d870a928f1c209b4fe751cf4f63f480f99defb82e2431143544ad7a38e3</originalsourceid><addsrcrecordid>eNpFkctOGzEUhq2KSoWURd_AUldIDPUtviwRogURqV20a8vxHCdGEzuxPVAeJ8_Ci3UCqKzO0bl8-vX_CH2h5IISyb_RC2GI4Ep_QMeUaNMpKeXRoVekk5LTT-ik1ntCCDdMHqP8q-RlTCu8G11q4wa71GM_uFqjdwNuY1mOAyQP08INefWEY8IPOeG7533ZPO8THuJujD1ewxDHzTlOsZW8gnT-Qnp0DQqGv1socQOp1c_oY3BDhdO3OkN_vl__vrrpFj9_3F5dLjrP56J1is57UL1WxBmmA_WMmKUIoObUBxEkD0KTYEwPYakZMMEpFdOncL1yXAOfoa-v3FxbtNXHBn7tc0rgm2VMEM4mm2bo7PVq7Qa7nSS68mSzi_bmcmEPM0Kp0VyxB_pO3Ja8G6E2e5_HMplSLaNMCkOF0O9EX3KtBcJ_LCX2kJCl9i0h_g-ItYMk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126491448</pqid></control><display><type>article</type><title>Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Saint-Michel, B. ; Herbert, E. ; Salort, J. ; Baudet, C. ; Bon Mardion, M. ; Bonnay, P. ; Bourgoin, M. ; Castaing, B. ; Chevillard, L. ; Daviaud, F. ; Diribarne, P. ; Dubrulle, B. ; Gagne, Y. ; Gibert, M. ; Girard, A. ; Hébral, B. ; Lehner, Th ; Rousset, B.</creator><creatorcontrib>Saint-Michel, B. ; Herbert, E. ; Salort, J. ; Baudet, C. ; Bon Mardion, M. ; Bonnay, P. ; Bourgoin, M. ; Castaing, B. ; Chevillard, L. ; Daviaud, F. ; Diribarne, P. ; Dubrulle, B. ; Gagne, Y. ; Gibert, M. ; Girard, A. ; Hébral, B. ; Lehner, Th ; Rousset, B. ; SHREK Collaboration</creatorcontrib><description>We report measurements of the dissipation in the Superfluid helium high REynold number von Kármán flow experiment for different forcing conditions. Statistically steady flows are reached; they display a hysteretic behavior similar to what has been observed in a 1:4 scale water experiment. Our macroscopical measurements indicate no noticeable difference between classical and superfluid flows, thereby providing evidence of the same dissipation scaling laws in the two phases. A detailed study of the evolution of the hysteresis cycle with the Reynolds number supports the idea that the stability of the steady states of classical turbulence in this closed flow is partly governed by the dissipative scales. It also supports the idea that the normal and the superfluid components at these temperatures (1.6 K) are locked down to the dissipative length scale.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4904378</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Astrophysics ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CLASSICAL MECHANICS ; ENGINEERING ; Flow stability ; Fluid Dynamics ; Fluid flow ; Fluids ; HELIUM ; HYSTERESIS ; Liquid helium ; NITROGEN ; Physics ; QUANTUM MECHANICS ; REYNOLDS NUMBER ; SCALING LAWS ; STABILITY ; STEADY FLOW ; STEADY-STATE CONDITIONS ; SUPERFLUIDITY ; TURBULENCE ; Turbulent flow ; WATER</subject><ispartof>Physics of fluids (1994), 2014-12, Vol.26 (12)</ispartof><rights>2014 AIP Publishing LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-715de7d870a928f1c209b4fe751cf4f63f480f99defb82e2431143544ad7a38e3</citedby><cites>FETCH-LOGICAL-c354t-715de7d870a928f1c209b4fe751cf4f63f480f99defb82e2431143544ad7a38e3</cites><orcidid>0000-0001-6596-0895 ; 0000-0001-9442-7694 ; 0000-0002-9772-9097 ; 0000-0002-5248-492X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01198372$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22403204$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Saint-Michel, B.</creatorcontrib><creatorcontrib>Herbert, E.</creatorcontrib><creatorcontrib>Salort, J.</creatorcontrib><creatorcontrib>Baudet, C.</creatorcontrib><creatorcontrib>Bon Mardion, M.</creatorcontrib><creatorcontrib>Bonnay, P.</creatorcontrib><creatorcontrib>Bourgoin, M.</creatorcontrib><creatorcontrib>Castaing, B.</creatorcontrib><creatorcontrib>Chevillard, L.</creatorcontrib><creatorcontrib>Daviaud, F.</creatorcontrib><creatorcontrib>Diribarne, P.</creatorcontrib><creatorcontrib>Dubrulle, B.</creatorcontrib><creatorcontrib>Gagne, Y.</creatorcontrib><creatorcontrib>Gibert, M.</creatorcontrib><creatorcontrib>Girard, A.</creatorcontrib><creatorcontrib>Hébral, B.</creatorcontrib><creatorcontrib>Lehner, Th</creatorcontrib><creatorcontrib>Rousset, B.</creatorcontrib><creatorcontrib>SHREK Collaboration</creatorcontrib><title>Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments</title><title>Physics of fluids (1994)</title><description>We report measurements of the dissipation in the Superfluid helium high REynold number von Kármán flow experiment for different forcing conditions. Statistically steady flows are reached; they display a hysteretic behavior similar to what has been observed in a 1:4 scale water experiment. Our macroscopical measurements indicate no noticeable difference between classical and superfluid flows, thereby providing evidence of the same dissipation scaling laws in the two phases. A detailed study of the evolution of the hysteresis cycle with the Reynolds number supports the idea that the stability of the steady states of classical turbulence in this closed flow is partly governed by the dissipative scales. It also supports the idea that the normal and the superfluid components at these temperatures (1.6 K) are locked down to the dissipative length scale.</description><subject>Astrophysics</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CLASSICAL MECHANICS</subject><subject>ENGINEERING</subject><subject>Flow stability</subject><subject>Fluid Dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>HELIUM</subject><subject>HYSTERESIS</subject><subject>Liquid helium</subject><subject>NITROGEN</subject><subject>Physics</subject><subject>QUANTUM MECHANICS</subject><subject>REYNOLDS NUMBER</subject><subject>SCALING LAWS</subject><subject>STABILITY</subject><subject>STEADY FLOW</subject><subject>STEADY-STATE CONDITIONS</subject><subject>SUPERFLUIDITY</subject><subject>TURBULENCE</subject><subject>Turbulent flow</subject><subject>WATER</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkctOGzEUhq2KSoWURd_AUldIDPUtviwRogURqV20a8vxHCdGEzuxPVAeJ8_Ci3UCqKzO0bl8-vX_CH2h5IISyb_RC2GI4Ep_QMeUaNMpKeXRoVekk5LTT-ik1ntCCDdMHqP8q-RlTCu8G11q4wa71GM_uFqjdwNuY1mOAyQP08INefWEY8IPOeG7533ZPO8THuJujD1ewxDHzTlOsZW8gnT-Qnp0DQqGv1socQOp1c_oY3BDhdO3OkN_vl__vrrpFj9_3F5dLjrP56J1is57UL1WxBmmA_WMmKUIoObUBxEkD0KTYEwPYakZMMEpFdOncL1yXAOfoa-v3FxbtNXHBn7tc0rgm2VMEM4mm2bo7PVq7Qa7nSS68mSzi_bmcmEPM0Kp0VyxB_pO3Ja8G6E2e5_HMplSLaNMCkOF0O9EX3KtBcJ_LCX2kJCl9i0h_g-ItYMk</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Saint-Michel, B.</creator><creator>Herbert, E.</creator><creator>Salort, J.</creator><creator>Baudet, C.</creator><creator>Bon Mardion, M.</creator><creator>Bonnay, P.</creator><creator>Bourgoin, M.</creator><creator>Castaing, B.</creator><creator>Chevillard, L.</creator><creator>Daviaud, F.</creator><creator>Diribarne, P.</creator><creator>Dubrulle, B.</creator><creator>Gagne, Y.</creator><creator>Gibert, M.</creator><creator>Girard, A.</creator><creator>Hébral, B.</creator><creator>Lehner, Th</creator><creator>Rousset, B.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6596-0895</orcidid><orcidid>https://orcid.org/0000-0001-9442-7694</orcidid><orcidid>https://orcid.org/0000-0002-9772-9097</orcidid><orcidid>https://orcid.org/0000-0002-5248-492X</orcidid></search><sort><creationdate>20141201</creationdate><title>Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments</title><author>Saint-Michel, B. ; Herbert, E. ; Salort, J. ; Baudet, C. ; Bon Mardion, M. ; Bonnay, P. ; Bourgoin, M. ; Castaing, B. ; Chevillard, L. ; Daviaud, F. ; Diribarne, P. ; Dubrulle, B. ; Gagne, Y. ; Gibert, M. ; Girard, A. ; Hébral, B. ; Lehner, Th ; Rousset, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-715de7d870a928f1c209b4fe751cf4f63f480f99defb82e2431143544ad7a38e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Astrophysics</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CLASSICAL MECHANICS</topic><topic>ENGINEERING</topic><topic>Flow stability</topic><topic>Fluid Dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>HELIUM</topic><topic>HYSTERESIS</topic><topic>Liquid helium</topic><topic>NITROGEN</topic><topic>Physics</topic><topic>QUANTUM MECHANICS</topic><topic>REYNOLDS NUMBER</topic><topic>SCALING LAWS</topic><topic>STABILITY</topic><topic>STEADY FLOW</topic><topic>STEADY-STATE CONDITIONS</topic><topic>SUPERFLUIDITY</topic><topic>TURBULENCE</topic><topic>Turbulent flow</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saint-Michel, B.</creatorcontrib><creatorcontrib>Herbert, E.</creatorcontrib><creatorcontrib>Salort, J.</creatorcontrib><creatorcontrib>Baudet, C.</creatorcontrib><creatorcontrib>Bon Mardion, M.</creatorcontrib><creatorcontrib>Bonnay, P.</creatorcontrib><creatorcontrib>Bourgoin, M.</creatorcontrib><creatorcontrib>Castaing, B.</creatorcontrib><creatorcontrib>Chevillard, L.</creatorcontrib><creatorcontrib>Daviaud, F.</creatorcontrib><creatorcontrib>Diribarne, P.</creatorcontrib><creatorcontrib>Dubrulle, B.</creatorcontrib><creatorcontrib>Gagne, Y.</creatorcontrib><creatorcontrib>Gibert, M.</creatorcontrib><creatorcontrib>Girard, A.</creatorcontrib><creatorcontrib>Hébral, B.</creatorcontrib><creatorcontrib>Lehner, Th</creatorcontrib><creatorcontrib>Rousset, B.</creatorcontrib><creatorcontrib>SHREK Collaboration</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saint-Michel, B.</au><au>Herbert, E.</au><au>Salort, J.</au><au>Baudet, C.</au><au>Bon Mardion, M.</au><au>Bonnay, P.</au><au>Bourgoin, M.</au><au>Castaing, B.</au><au>Chevillard, L.</au><au>Daviaud, F.</au><au>Diribarne, P.</au><au>Dubrulle, B.</au><au>Gagne, Y.</au><au>Gibert, M.</au><au>Girard, A.</au><au>Hébral, B.</au><au>Lehner, Th</au><au>Rousset, B.</au><aucorp>SHREK Collaboration</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>26</volume><issue>12</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><abstract>We report measurements of the dissipation in the Superfluid helium high REynold number von Kármán flow experiment for different forcing conditions. Statistically steady flows are reached; they display a hysteretic behavior similar to what has been observed in a 1:4 scale water experiment. Our macroscopical measurements indicate no noticeable difference between classical and superfluid flows, thereby providing evidence of the same dissipation scaling laws in the two phases. A detailed study of the evolution of the hysteresis cycle with the Reynolds number supports the idea that the stability of the steady states of classical turbulence in this closed flow is partly governed by the dissipative scales. It also supports the idea that the normal and the superfluid components at these temperatures (1.6 K) are locked down to the dissipative length scale.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4904378</doi><orcidid>https://orcid.org/0000-0001-6596-0895</orcidid><orcidid>https://orcid.org/0000-0001-9442-7694</orcidid><orcidid>https://orcid.org/0000-0002-9772-9097</orcidid><orcidid>https://orcid.org/0000-0002-5248-492X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2014-12, Vol.26 (12)
issn 1070-6631
1089-7666
language eng
recordid cdi_osti_scitechconnect_22403204
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Astrophysics
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CLASSICAL MECHANICS
ENGINEERING
Flow stability
Fluid Dynamics
Fluid flow
Fluids
HELIUM
HYSTERESIS
Liquid helium
NITROGEN
Physics
QUANTUM MECHANICS
REYNOLDS NUMBER
SCALING LAWS
STABILITY
STEADY FLOW
STEADY-STATE CONDITIONS
SUPERFLUIDITY
TURBULENCE
Turbulent flow
WATER
title Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A36%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20quantum%20and%20classical%20turbulence%20analogy%20in%20von%20K%C3%A1rm%C3%A1n%20liquid%20helium,%20nitrogen,%20and%20water%20experiments&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Saint-Michel,%20B.&rft.aucorp=SHREK%20Collaboration&rft.date=2014-12-01&rft.volume=26&rft.issue=12&rft.issn=1070-6631&rft.eissn=1089-7666&rft_id=info:doi/10.1063/1.4904378&rft_dat=%3Cproquest_osti_%3E2126491448%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-715de7d870a928f1c209b4fe751cf4f63f480f99defb82e2431143544ad7a38e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126491448&rft_id=info:pmid/&rfr_iscdi=true