Loading…
Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments
We report measurements of the dissipation in the Superfluid helium high REynold number von Kármán flow experiment for different forcing conditions. Statistically steady flows are reached; they display a hysteretic behavior similar to what has been observed in a 1:4 scale water experiment. Our macros...
Saved in:
Published in: | Physics of fluids (1994) 2014-12, Vol.26 (12) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-715de7d870a928f1c209b4fe751cf4f63f480f99defb82e2431143544ad7a38e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-715de7d870a928f1c209b4fe751cf4f63f480f99defb82e2431143544ad7a38e3 |
container_end_page | |
container_issue | 12 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 26 |
creator | Saint-Michel, B. Herbert, E. Salort, J. Baudet, C. Bon Mardion, M. Bonnay, P. Bourgoin, M. Castaing, B. Chevillard, L. Daviaud, F. Diribarne, P. Dubrulle, B. Gagne, Y. Gibert, M. Girard, A. Hébral, B. Lehner, Th Rousset, B. |
description | We report measurements of the dissipation in the Superfluid helium high REynold number von Kármán flow experiment for different forcing conditions. Statistically steady flows are reached; they display a hysteretic behavior similar to what has been observed in a 1:4 scale water experiment. Our macroscopical measurements indicate no noticeable difference between classical and superfluid flows, thereby providing evidence of the same dissipation scaling laws in the two phases. A detailed study of the evolution of the hysteresis cycle with the Reynolds number supports the idea that the stability of the steady states of classical turbulence in this closed flow is partly governed by the dissipative scales. It also supports the idea that the normal and the superfluid components at these temperatures (1.6 K) are locked down to the dissipative length scale. |
doi_str_mv | 10.1063/1.4904378 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22403204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126491448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-715de7d870a928f1c209b4fe751cf4f63f480f99defb82e2431143544ad7a38e3</originalsourceid><addsrcrecordid>eNpFkctOGzEUhq2KSoWURd_AUldIDPUtviwRogURqV20a8vxHCdGEzuxPVAeJ8_Ci3UCqKzO0bl8-vX_CH2h5IISyb_RC2GI4Ep_QMeUaNMpKeXRoVekk5LTT-ik1ntCCDdMHqP8q-RlTCu8G11q4wa71GM_uFqjdwNuY1mOAyQP08INefWEY8IPOeG7533ZPO8THuJujD1ewxDHzTlOsZW8gnT-Qnp0DQqGv1socQOp1c_oY3BDhdO3OkN_vl__vrrpFj9_3F5dLjrP56J1is57UL1WxBmmA_WMmKUIoObUBxEkD0KTYEwPYakZMMEpFdOncL1yXAOfoa-v3FxbtNXHBn7tc0rgm2VMEM4mm2bo7PVq7Qa7nSS68mSzi_bmcmEPM0Kp0VyxB_pO3Ja8G6E2e5_HMplSLaNMCkOF0O9EX3KtBcJ_LCX2kJCl9i0h_g-ItYMk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126491448</pqid></control><display><type>article</type><title>Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Saint-Michel, B. ; Herbert, E. ; Salort, J. ; Baudet, C. ; Bon Mardion, M. ; Bonnay, P. ; Bourgoin, M. ; Castaing, B. ; Chevillard, L. ; Daviaud, F. ; Diribarne, P. ; Dubrulle, B. ; Gagne, Y. ; Gibert, M. ; Girard, A. ; Hébral, B. ; Lehner, Th ; Rousset, B.</creator><creatorcontrib>Saint-Michel, B. ; Herbert, E. ; Salort, J. ; Baudet, C. ; Bon Mardion, M. ; Bonnay, P. ; Bourgoin, M. ; Castaing, B. ; Chevillard, L. ; Daviaud, F. ; Diribarne, P. ; Dubrulle, B. ; Gagne, Y. ; Gibert, M. ; Girard, A. ; Hébral, B. ; Lehner, Th ; Rousset, B. ; SHREK Collaboration</creatorcontrib><description>We report measurements of the dissipation in the Superfluid helium high REynold number von Kármán flow experiment for different forcing conditions. Statistically steady flows are reached; they display a hysteretic behavior similar to what has been observed in a 1:4 scale water experiment. Our macroscopical measurements indicate no noticeable difference between classical and superfluid flows, thereby providing evidence of the same dissipation scaling laws in the two phases. A detailed study of the evolution of the hysteresis cycle with the Reynolds number supports the idea that the stability of the steady states of classical turbulence in this closed flow is partly governed by the dissipative scales. It also supports the idea that the normal and the superfluid components at these temperatures (1.6 K) are locked down to the dissipative length scale.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4904378</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Astrophysics ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CLASSICAL MECHANICS ; ENGINEERING ; Flow stability ; Fluid Dynamics ; Fluid flow ; Fluids ; HELIUM ; HYSTERESIS ; Liquid helium ; NITROGEN ; Physics ; QUANTUM MECHANICS ; REYNOLDS NUMBER ; SCALING LAWS ; STABILITY ; STEADY FLOW ; STEADY-STATE CONDITIONS ; SUPERFLUIDITY ; TURBULENCE ; Turbulent flow ; WATER</subject><ispartof>Physics of fluids (1994), 2014-12, Vol.26 (12)</ispartof><rights>2014 AIP Publishing LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-715de7d870a928f1c209b4fe751cf4f63f480f99defb82e2431143544ad7a38e3</citedby><cites>FETCH-LOGICAL-c354t-715de7d870a928f1c209b4fe751cf4f63f480f99defb82e2431143544ad7a38e3</cites><orcidid>0000-0001-6596-0895 ; 0000-0001-9442-7694 ; 0000-0002-9772-9097 ; 0000-0002-5248-492X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01198372$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22403204$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Saint-Michel, B.</creatorcontrib><creatorcontrib>Herbert, E.</creatorcontrib><creatorcontrib>Salort, J.</creatorcontrib><creatorcontrib>Baudet, C.</creatorcontrib><creatorcontrib>Bon Mardion, M.</creatorcontrib><creatorcontrib>Bonnay, P.</creatorcontrib><creatorcontrib>Bourgoin, M.</creatorcontrib><creatorcontrib>Castaing, B.</creatorcontrib><creatorcontrib>Chevillard, L.</creatorcontrib><creatorcontrib>Daviaud, F.</creatorcontrib><creatorcontrib>Diribarne, P.</creatorcontrib><creatorcontrib>Dubrulle, B.</creatorcontrib><creatorcontrib>Gagne, Y.</creatorcontrib><creatorcontrib>Gibert, M.</creatorcontrib><creatorcontrib>Girard, A.</creatorcontrib><creatorcontrib>Hébral, B.</creatorcontrib><creatorcontrib>Lehner, Th</creatorcontrib><creatorcontrib>Rousset, B.</creatorcontrib><creatorcontrib>SHREK Collaboration</creatorcontrib><title>Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments</title><title>Physics of fluids (1994)</title><description>We report measurements of the dissipation in the Superfluid helium high REynold number von Kármán flow experiment for different forcing conditions. Statistically steady flows are reached; they display a hysteretic behavior similar to what has been observed in a 1:4 scale water experiment. Our macroscopical measurements indicate no noticeable difference between classical and superfluid flows, thereby providing evidence of the same dissipation scaling laws in the two phases. A detailed study of the evolution of the hysteresis cycle with the Reynolds number supports the idea that the stability of the steady states of classical turbulence in this closed flow is partly governed by the dissipative scales. It also supports the idea that the normal and the superfluid components at these temperatures (1.6 K) are locked down to the dissipative length scale.</description><subject>Astrophysics</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CLASSICAL MECHANICS</subject><subject>ENGINEERING</subject><subject>Flow stability</subject><subject>Fluid Dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>HELIUM</subject><subject>HYSTERESIS</subject><subject>Liquid helium</subject><subject>NITROGEN</subject><subject>Physics</subject><subject>QUANTUM MECHANICS</subject><subject>REYNOLDS NUMBER</subject><subject>SCALING LAWS</subject><subject>STABILITY</subject><subject>STEADY FLOW</subject><subject>STEADY-STATE CONDITIONS</subject><subject>SUPERFLUIDITY</subject><subject>TURBULENCE</subject><subject>Turbulent flow</subject><subject>WATER</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkctOGzEUhq2KSoWURd_AUldIDPUtviwRogURqV20a8vxHCdGEzuxPVAeJ8_Ci3UCqKzO0bl8-vX_CH2h5IISyb_RC2GI4Ep_QMeUaNMpKeXRoVekk5LTT-ik1ntCCDdMHqP8q-RlTCu8G11q4wa71GM_uFqjdwNuY1mOAyQP08INefWEY8IPOeG7533ZPO8THuJujD1ewxDHzTlOsZW8gnT-Qnp0DQqGv1socQOp1c_oY3BDhdO3OkN_vl__vrrpFj9_3F5dLjrP56J1is57UL1WxBmmA_WMmKUIoObUBxEkD0KTYEwPYakZMMEpFdOncL1yXAOfoa-v3FxbtNXHBn7tc0rgm2VMEM4mm2bo7PVq7Qa7nSS68mSzi_bmcmEPM0Kp0VyxB_pO3Ja8G6E2e5_HMplSLaNMCkOF0O9EX3KtBcJ_LCX2kJCl9i0h_g-ItYMk</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Saint-Michel, B.</creator><creator>Herbert, E.</creator><creator>Salort, J.</creator><creator>Baudet, C.</creator><creator>Bon Mardion, M.</creator><creator>Bonnay, P.</creator><creator>Bourgoin, M.</creator><creator>Castaing, B.</creator><creator>Chevillard, L.</creator><creator>Daviaud, F.</creator><creator>Diribarne, P.</creator><creator>Dubrulle, B.</creator><creator>Gagne, Y.</creator><creator>Gibert, M.</creator><creator>Girard, A.</creator><creator>Hébral, B.</creator><creator>Lehner, Th</creator><creator>Rousset, B.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6596-0895</orcidid><orcidid>https://orcid.org/0000-0001-9442-7694</orcidid><orcidid>https://orcid.org/0000-0002-9772-9097</orcidid><orcidid>https://orcid.org/0000-0002-5248-492X</orcidid></search><sort><creationdate>20141201</creationdate><title>Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments</title><author>Saint-Michel, B. ; Herbert, E. ; Salort, J. ; Baudet, C. ; Bon Mardion, M. ; Bonnay, P. ; Bourgoin, M. ; Castaing, B. ; Chevillard, L. ; Daviaud, F. ; Diribarne, P. ; Dubrulle, B. ; Gagne, Y. ; Gibert, M. ; Girard, A. ; Hébral, B. ; Lehner, Th ; Rousset, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-715de7d870a928f1c209b4fe751cf4f63f480f99defb82e2431143544ad7a38e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Astrophysics</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CLASSICAL MECHANICS</topic><topic>ENGINEERING</topic><topic>Flow stability</topic><topic>Fluid Dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>HELIUM</topic><topic>HYSTERESIS</topic><topic>Liquid helium</topic><topic>NITROGEN</topic><topic>Physics</topic><topic>QUANTUM MECHANICS</topic><topic>REYNOLDS NUMBER</topic><topic>SCALING LAWS</topic><topic>STABILITY</topic><topic>STEADY FLOW</topic><topic>STEADY-STATE CONDITIONS</topic><topic>SUPERFLUIDITY</topic><topic>TURBULENCE</topic><topic>Turbulent flow</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saint-Michel, B.</creatorcontrib><creatorcontrib>Herbert, E.</creatorcontrib><creatorcontrib>Salort, J.</creatorcontrib><creatorcontrib>Baudet, C.</creatorcontrib><creatorcontrib>Bon Mardion, M.</creatorcontrib><creatorcontrib>Bonnay, P.</creatorcontrib><creatorcontrib>Bourgoin, M.</creatorcontrib><creatorcontrib>Castaing, B.</creatorcontrib><creatorcontrib>Chevillard, L.</creatorcontrib><creatorcontrib>Daviaud, F.</creatorcontrib><creatorcontrib>Diribarne, P.</creatorcontrib><creatorcontrib>Dubrulle, B.</creatorcontrib><creatorcontrib>Gagne, Y.</creatorcontrib><creatorcontrib>Gibert, M.</creatorcontrib><creatorcontrib>Girard, A.</creatorcontrib><creatorcontrib>Hébral, B.</creatorcontrib><creatorcontrib>Lehner, Th</creatorcontrib><creatorcontrib>Rousset, B.</creatorcontrib><creatorcontrib>SHREK Collaboration</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saint-Michel, B.</au><au>Herbert, E.</au><au>Salort, J.</au><au>Baudet, C.</au><au>Bon Mardion, M.</au><au>Bonnay, P.</au><au>Bourgoin, M.</au><au>Castaing, B.</au><au>Chevillard, L.</au><au>Daviaud, F.</au><au>Diribarne, P.</au><au>Dubrulle, B.</au><au>Gagne, Y.</au><au>Gibert, M.</au><au>Girard, A.</au><au>Hébral, B.</au><au>Lehner, Th</au><au>Rousset, B.</au><aucorp>SHREK Collaboration</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>26</volume><issue>12</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><abstract>We report measurements of the dissipation in the Superfluid helium high REynold number von Kármán flow experiment for different forcing conditions. Statistically steady flows are reached; they display a hysteretic behavior similar to what has been observed in a 1:4 scale water experiment. Our macroscopical measurements indicate no noticeable difference between classical and superfluid flows, thereby providing evidence of the same dissipation scaling laws in the two phases. A detailed study of the evolution of the hysteresis cycle with the Reynolds number supports the idea that the stability of the steady states of classical turbulence in this closed flow is partly governed by the dissipative scales. It also supports the idea that the normal and the superfluid components at these temperatures (1.6 K) are locked down to the dissipative length scale.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4904378</doi><orcidid>https://orcid.org/0000-0001-6596-0895</orcidid><orcidid>https://orcid.org/0000-0001-9442-7694</orcidid><orcidid>https://orcid.org/0000-0002-9772-9097</orcidid><orcidid>https://orcid.org/0000-0002-5248-492X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2014-12, Vol.26 (12) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_osti_scitechconnect_22403204 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Astrophysics CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CLASSICAL MECHANICS ENGINEERING Flow stability Fluid Dynamics Fluid flow Fluids HELIUM HYSTERESIS Liquid helium NITROGEN Physics QUANTUM MECHANICS REYNOLDS NUMBER SCALING LAWS STABILITY STEADY FLOW STEADY-STATE CONDITIONS SUPERFLUIDITY TURBULENCE Turbulent flow WATER |
title | Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A36%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20quantum%20and%20classical%20turbulence%20analogy%20in%20von%20K%C3%A1rm%C3%A1n%20liquid%20helium,%20nitrogen,%20and%20water%20experiments&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Saint-Michel,%20B.&rft.aucorp=SHREK%20Collaboration&rft.date=2014-12-01&rft.volume=26&rft.issue=12&rft.issn=1070-6631&rft.eissn=1089-7666&rft_id=info:doi/10.1063/1.4904378&rft_dat=%3Cproquest_osti_%3E2126491448%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-715de7d870a928f1c209b4fe751cf4f63f480f99defb82e2431143544ad7a38e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126491448&rft_id=info:pmid/&rfr_iscdi=true |