Loading…
Interlaced linear-nonlinear wave propagation in a warm multicomponent plasma
Linear and nonlinear propagations of arbitrary amplitude nonlinear structures, viz. solitons, double layers, and supersolitons are investigated in multicomponent plasma consisting of warm ions, two temperature nonthermal electrons and hot nonthermal positrons. The Sagdeev pseudopotential approach is...
Saved in:
Published in: | Physics of plasmas 2014-12, Vol.21 (12) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Linear and nonlinear propagations of arbitrary amplitude nonlinear structures, viz. solitons, double layers, and supersolitons are investigated in multicomponent plasma consisting of warm ions, two temperature nonthermal electrons and hot nonthermal positrons. The Sagdeev pseudopotential approach is employed to obtain the energy integral equation in such a multicomponent plasma using fluid theory. The effects of several plasma parameters on the ion acoustic solitons, double layers, and supersolitons are analyzed. It is found that the present system supports the coexistence of arbitrary amplitude positive and negative potential solitons in a certain region of parameter space in addition to compressive and rarefactive double layers. Furthermore, numerical calculations reveal that these structures may exist either in supersonic or subsonic regimes. Also, the present plasma system supports supersolitonic structure in supersonic regime. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.4904380 |