Loading…

Entropy and stability of phase synchronisation of oscillators on networks

I examine the role of entropy in the transition from incoherence to phase synchronisation in the Kuramoto model of N coupled phase oscillators on a general undirected network. In a Hamiltonian ‘action-angle’ formulation, auxiliary variables Ji combine with the phases θi to determine a conserved syst...

Full description

Saved in:
Bibliographic Details
Published in:Annals of physics 2014-09, Vol.348, p.127-143
Main Author: Kalloniatis, Alexander C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-97043c1519d280133ed05170b1722cae6a475ababfad7ef6a25e0601317acba03
cites cdi_FETCH-LOGICAL-c353t-97043c1519d280133ed05170b1722cae6a475ababfad7ef6a25e0601317acba03
container_end_page 143
container_issue
container_start_page 127
container_title Annals of physics
container_volume 348
creator Kalloniatis, Alexander C.
description I examine the role of entropy in the transition from incoherence to phase synchronisation in the Kuramoto model of N coupled phase oscillators on a general undirected network. In a Hamiltonian ‘action-angle’ formulation, auxiliary variables Ji combine with the phases θi to determine a conserved system with a 2N dimensional phase space. In the vicinity of the fixed point for phase synchronisation, θi≈θj, which is known to be stable, the auxiliary variables Ji exhibit instability. This manifests Liouville’s Theorem in the phase synchronised regime in that contraction in the θi parts of phase space are compensated for by expansion in the auxiliary dimensions. I formulate an entropy rate based on the projection of the Ji onto eigenvectors of the graph Laplacian that satisfies Pesin’s Theorem. This leads to the insight that the evolution to phase synchronisation of the Kuramoto model is equivalent to the approach to a state of monotonically increasing entropy. Indeed, for unequal intrinsic frequencies on the nodes, the networks that achieve the closest to exact phase synchronisation are those which enjoy the highest entropy production. I compare numerical results for a range of networks.
doi_str_mv 10.1016/j.aop.2014.05.012
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22403382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491614001262</els_id><sourcerecordid>3393944281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-97043c1519d280133ed05170b1722cae6a475ababfad7ef6a25e0601317acba03</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKcfwFvBc-t7SdOueJIxdTDwouAtpGnKMmdSk0zptzdlgjdPgZff__F_P0KuEQoErG53hXRDQQHLAngBSE_IDKGpcmD87ZTMAIDlZYPVObkIYQeAWPLFjKxXNno3jJm0XRaibM3exDFzfTZsZdBZGK3aemdNkNE4O324oMx-L6PzIUsTq-O38-_hkpz1ch_01e87J68Pq5flU755flwv7ze5YpzFvKmhZAo5Nh1dADKmO-BYQ4s1pUrqSpY1l61se9nVuq8k5RqqBGItVSuBzcnNca8L0YjUJWq1Vc5araKgtATGFvSPGrz7POgQxc4dvE3FBHKOZVWxuk4UHinlXQhe92Lw5kP6USCIyavYieRVTF4FcJG8pszdMaPTkV9G-6mDtkp3xk8VOmf-Sf8AVyt_1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551466377</pqid></control><display><type>article</type><title>Entropy and stability of phase synchronisation of oscillators on networks</title><source>ScienceDirect Freedom Collection</source><creator>Kalloniatis, Alexander C.</creator><creatorcontrib>Kalloniatis, Alexander C.</creatorcontrib><description>I examine the role of entropy in the transition from incoherence to phase synchronisation in the Kuramoto model of N coupled phase oscillators on a general undirected network. In a Hamiltonian ‘action-angle’ formulation, auxiliary variables Ji combine with the phases θi to determine a conserved system with a 2N dimensional phase space. In the vicinity of the fixed point for phase synchronisation, θi≈θj, which is known to be stable, the auxiliary variables Ji exhibit instability. This manifests Liouville’s Theorem in the phase synchronised regime in that contraction in the θi parts of phase space are compensated for by expansion in the auxiliary dimensions. I formulate an entropy rate based on the projection of the Ji onto eigenvectors of the graph Laplacian that satisfies Pesin’s Theorem. This leads to the insight that the evolution to phase synchronisation of the Kuramoto model is equivalent to the approach to a state of monotonically increasing entropy. Indeed, for unequal intrinsic frequencies on the nodes, the networks that achieve the closest to exact phase synchronisation are those which enjoy the highest entropy production. I compare numerical results for a range of networks.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2014.05.012</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; EIGENVECTORS ; ENTROPY ; HAMILTONIANS ; Kuramoto ; Laplace transforms ; LAPLACIAN ; Neural networks ; Oscillator ; OSCILLATORS ; Pesin theorem ; PHASE OSCILLATIONS ; PHASE SPACE ; Phase transitions ; STABILITY ; Synchronisation ; SYNCHRONIZATION</subject><ispartof>Annals of physics, 2014-09, Vol.348, p.127-143</ispartof><rights>2014</rights><rights>Copyright Elsevier BV Sep 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-97043c1519d280133ed05170b1722cae6a475ababfad7ef6a25e0601317acba03</citedby><cites>FETCH-LOGICAL-c353t-97043c1519d280133ed05170b1722cae6a475ababfad7ef6a25e0601317acba03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22403382$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalloniatis, Alexander C.</creatorcontrib><title>Entropy and stability of phase synchronisation of oscillators on networks</title><title>Annals of physics</title><description>I examine the role of entropy in the transition from incoherence to phase synchronisation in the Kuramoto model of N coupled phase oscillators on a general undirected network. In a Hamiltonian ‘action-angle’ formulation, auxiliary variables Ji combine with the phases θi to determine a conserved system with a 2N dimensional phase space. In the vicinity of the fixed point for phase synchronisation, θi≈θj, which is known to be stable, the auxiliary variables Ji exhibit instability. This manifests Liouville’s Theorem in the phase synchronised regime in that contraction in the θi parts of phase space are compensated for by expansion in the auxiliary dimensions. I formulate an entropy rate based on the projection of the Ji onto eigenvectors of the graph Laplacian that satisfies Pesin’s Theorem. This leads to the insight that the evolution to phase synchronisation of the Kuramoto model is equivalent to the approach to a state of monotonically increasing entropy. Indeed, for unequal intrinsic frequencies on the nodes, the networks that achieve the closest to exact phase synchronisation are those which enjoy the highest entropy production. I compare numerical results for a range of networks.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>EIGENVECTORS</subject><subject>ENTROPY</subject><subject>HAMILTONIANS</subject><subject>Kuramoto</subject><subject>Laplace transforms</subject><subject>LAPLACIAN</subject><subject>Neural networks</subject><subject>Oscillator</subject><subject>OSCILLATORS</subject><subject>Pesin theorem</subject><subject>PHASE OSCILLATIONS</subject><subject>PHASE SPACE</subject><subject>Phase transitions</subject><subject>STABILITY</subject><subject>Synchronisation</subject><subject>SYNCHRONIZATION</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKcfwFvBc-t7SdOueJIxdTDwouAtpGnKMmdSk0zptzdlgjdPgZff__F_P0KuEQoErG53hXRDQQHLAngBSE_IDKGpcmD87ZTMAIDlZYPVObkIYQeAWPLFjKxXNno3jJm0XRaibM3exDFzfTZsZdBZGK3aemdNkNE4O324oMx-L6PzIUsTq-O38-_hkpz1ch_01e87J68Pq5flU755flwv7ze5YpzFvKmhZAo5Nh1dADKmO-BYQ4s1pUrqSpY1l61se9nVuq8k5RqqBGItVSuBzcnNca8L0YjUJWq1Vc5araKgtATGFvSPGrz7POgQxc4dvE3FBHKOZVWxuk4UHinlXQhe92Lw5kP6USCIyavYieRVTF4FcJG8pszdMaPTkV9G-6mDtkp3xk8VOmf-Sf8AVyt_1w</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Kalloniatis, Alexander C.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140901</creationdate><title>Entropy and stability of phase synchronisation of oscillators on networks</title><author>Kalloniatis, Alexander C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-97043c1519d280133ed05170b1722cae6a475ababfad7ef6a25e0601317acba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>EIGENVECTORS</topic><topic>ENTROPY</topic><topic>HAMILTONIANS</topic><topic>Kuramoto</topic><topic>Laplace transforms</topic><topic>LAPLACIAN</topic><topic>Neural networks</topic><topic>Oscillator</topic><topic>OSCILLATORS</topic><topic>Pesin theorem</topic><topic>PHASE OSCILLATIONS</topic><topic>PHASE SPACE</topic><topic>Phase transitions</topic><topic>STABILITY</topic><topic>Synchronisation</topic><topic>SYNCHRONIZATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalloniatis, Alexander C.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalloniatis, Alexander C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy and stability of phase synchronisation of oscillators on networks</atitle><jtitle>Annals of physics</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>348</volume><spage>127</spage><epage>143</epage><pages>127-143</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>I examine the role of entropy in the transition from incoherence to phase synchronisation in the Kuramoto model of N coupled phase oscillators on a general undirected network. In a Hamiltonian ‘action-angle’ formulation, auxiliary variables Ji combine with the phases θi to determine a conserved system with a 2N dimensional phase space. In the vicinity of the fixed point for phase synchronisation, θi≈θj, which is known to be stable, the auxiliary variables Ji exhibit instability. This manifests Liouville’s Theorem in the phase synchronised regime in that contraction in the θi parts of phase space are compensated for by expansion in the auxiliary dimensions. I formulate an entropy rate based on the projection of the Ji onto eigenvectors of the graph Laplacian that satisfies Pesin’s Theorem. This leads to the insight that the evolution to phase synchronisation of the Kuramoto model is equivalent to the approach to a state of monotonically increasing entropy. Indeed, for unequal intrinsic frequencies on the nodes, the networks that achieve the closest to exact phase synchronisation are those which enjoy the highest entropy production. I compare numerical results for a range of networks.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2014.05.012</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 2014-09, Vol.348, p.127-143
issn 0003-4916
1096-035X
language eng
recordid cdi_osti_scitechconnect_22403382
source ScienceDirect Freedom Collection
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
EIGENVECTORS
ENTROPY
HAMILTONIANS
Kuramoto
Laplace transforms
LAPLACIAN
Neural networks
Oscillator
OSCILLATORS
Pesin theorem
PHASE OSCILLATIONS
PHASE SPACE
Phase transitions
STABILITY
Synchronisation
SYNCHRONIZATION
title Entropy and stability of phase synchronisation of oscillators on networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20and%20stability%20of%20phase%20synchronisation%20of%20oscillators%20on%20networks&rft.jtitle=Annals%20of%20physics&rft.au=Kalloniatis,%20Alexander%20C.&rft.date=2014-09-01&rft.volume=348&rft.spage=127&rft.epage=143&rft.pages=127-143&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2014.05.012&rft_dat=%3Cproquest_osti_%3E3393944281%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-97043c1519d280133ed05170b1722cae6a475ababfad7ef6a25e0601317acba03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551466377&rft_id=info:pmid/&rfr_iscdi=true