Loading…
Entropy and stability of phase synchronisation of oscillators on networks
I examine the role of entropy in the transition from incoherence to phase synchronisation in the Kuramoto model of N coupled phase oscillators on a general undirected network. In a Hamiltonian ‘action-angle’ formulation, auxiliary variables Ji combine with the phases θi to determine a conserved syst...
Saved in:
Published in: | Annals of physics 2014-09, Vol.348, p.127-143 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-97043c1519d280133ed05170b1722cae6a475ababfad7ef6a25e0601317acba03 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-97043c1519d280133ed05170b1722cae6a475ababfad7ef6a25e0601317acba03 |
container_end_page | 143 |
container_issue | |
container_start_page | 127 |
container_title | Annals of physics |
container_volume | 348 |
creator | Kalloniatis, Alexander C. |
description | I examine the role of entropy in the transition from incoherence to phase synchronisation in the Kuramoto model of N coupled phase oscillators on a general undirected network. In a Hamiltonian ‘action-angle’ formulation, auxiliary variables Ji combine with the phases θi to determine a conserved system with a 2N dimensional phase space. In the vicinity of the fixed point for phase synchronisation, θi≈θj, which is known to be stable, the auxiliary variables Ji exhibit instability. This manifests Liouville’s Theorem in the phase synchronised regime in that contraction in the θi parts of phase space are compensated for by expansion in the auxiliary dimensions. I formulate an entropy rate based on the projection of the Ji onto eigenvectors of the graph Laplacian that satisfies Pesin’s Theorem. This leads to the insight that the evolution to phase synchronisation of the Kuramoto model is equivalent to the approach to a state of monotonically increasing entropy. Indeed, for unequal intrinsic frequencies on the nodes, the networks that achieve the closest to exact phase synchronisation are those which enjoy the highest entropy production. I compare numerical results for a range of networks. |
doi_str_mv | 10.1016/j.aop.2014.05.012 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22403382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491614001262</els_id><sourcerecordid>3393944281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-97043c1519d280133ed05170b1722cae6a475ababfad7ef6a25e0601317acba03</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKcfwFvBc-t7SdOueJIxdTDwouAtpGnKMmdSk0zptzdlgjdPgZff__F_P0KuEQoErG53hXRDQQHLAngBSE_IDKGpcmD87ZTMAIDlZYPVObkIYQeAWPLFjKxXNno3jJm0XRaibM3exDFzfTZsZdBZGK3aemdNkNE4O324oMx-L6PzIUsTq-O38-_hkpz1ch_01e87J68Pq5flU755flwv7ze5YpzFvKmhZAo5Nh1dADKmO-BYQ4s1pUrqSpY1l61se9nVuq8k5RqqBGItVSuBzcnNca8L0YjUJWq1Vc5araKgtATGFvSPGrz7POgQxc4dvE3FBHKOZVWxuk4UHinlXQhe92Lw5kP6USCIyavYieRVTF4FcJG8pszdMaPTkV9G-6mDtkp3xk8VOmf-Sf8AVyt_1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551466377</pqid></control><display><type>article</type><title>Entropy and stability of phase synchronisation of oscillators on networks</title><source>ScienceDirect Freedom Collection</source><creator>Kalloniatis, Alexander C.</creator><creatorcontrib>Kalloniatis, Alexander C.</creatorcontrib><description>I examine the role of entropy in the transition from incoherence to phase synchronisation in the Kuramoto model of N coupled phase oscillators on a general undirected network. In a Hamiltonian ‘action-angle’ formulation, auxiliary variables Ji combine with the phases θi to determine a conserved system with a 2N dimensional phase space. In the vicinity of the fixed point for phase synchronisation, θi≈θj, which is known to be stable, the auxiliary variables Ji exhibit instability. This manifests Liouville’s Theorem in the phase synchronised regime in that contraction in the θi parts of phase space are compensated for by expansion in the auxiliary dimensions. I formulate an entropy rate based on the projection of the Ji onto eigenvectors of the graph Laplacian that satisfies Pesin’s Theorem. This leads to the insight that the evolution to phase synchronisation of the Kuramoto model is equivalent to the approach to a state of monotonically increasing entropy. Indeed, for unequal intrinsic frequencies on the nodes, the networks that achieve the closest to exact phase synchronisation are those which enjoy the highest entropy production. I compare numerical results for a range of networks.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2014.05.012</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; EIGENVECTORS ; ENTROPY ; HAMILTONIANS ; Kuramoto ; Laplace transforms ; LAPLACIAN ; Neural networks ; Oscillator ; OSCILLATORS ; Pesin theorem ; PHASE OSCILLATIONS ; PHASE SPACE ; Phase transitions ; STABILITY ; Synchronisation ; SYNCHRONIZATION</subject><ispartof>Annals of physics, 2014-09, Vol.348, p.127-143</ispartof><rights>2014</rights><rights>Copyright Elsevier BV Sep 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-97043c1519d280133ed05170b1722cae6a475ababfad7ef6a25e0601317acba03</citedby><cites>FETCH-LOGICAL-c353t-97043c1519d280133ed05170b1722cae6a475ababfad7ef6a25e0601317acba03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22403382$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalloniatis, Alexander C.</creatorcontrib><title>Entropy and stability of phase synchronisation of oscillators on networks</title><title>Annals of physics</title><description>I examine the role of entropy in the transition from incoherence to phase synchronisation in the Kuramoto model of N coupled phase oscillators on a general undirected network. In a Hamiltonian ‘action-angle’ formulation, auxiliary variables Ji combine with the phases θi to determine a conserved system with a 2N dimensional phase space. In the vicinity of the fixed point for phase synchronisation, θi≈θj, which is known to be stable, the auxiliary variables Ji exhibit instability. This manifests Liouville’s Theorem in the phase synchronised regime in that contraction in the θi parts of phase space are compensated for by expansion in the auxiliary dimensions. I formulate an entropy rate based on the projection of the Ji onto eigenvectors of the graph Laplacian that satisfies Pesin’s Theorem. This leads to the insight that the evolution to phase synchronisation of the Kuramoto model is equivalent to the approach to a state of monotonically increasing entropy. Indeed, for unequal intrinsic frequencies on the nodes, the networks that achieve the closest to exact phase synchronisation are those which enjoy the highest entropy production. I compare numerical results for a range of networks.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>EIGENVECTORS</subject><subject>ENTROPY</subject><subject>HAMILTONIANS</subject><subject>Kuramoto</subject><subject>Laplace transforms</subject><subject>LAPLACIAN</subject><subject>Neural networks</subject><subject>Oscillator</subject><subject>OSCILLATORS</subject><subject>Pesin theorem</subject><subject>PHASE OSCILLATIONS</subject><subject>PHASE SPACE</subject><subject>Phase transitions</subject><subject>STABILITY</subject><subject>Synchronisation</subject><subject>SYNCHRONIZATION</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKcfwFvBc-t7SdOueJIxdTDwouAtpGnKMmdSk0zptzdlgjdPgZff__F_P0KuEQoErG53hXRDQQHLAngBSE_IDKGpcmD87ZTMAIDlZYPVObkIYQeAWPLFjKxXNno3jJm0XRaibM3exDFzfTZsZdBZGK3aemdNkNE4O324oMx-L6PzIUsTq-O38-_hkpz1ch_01e87J68Pq5flU755flwv7ze5YpzFvKmhZAo5Nh1dADKmO-BYQ4s1pUrqSpY1l61se9nVuq8k5RqqBGItVSuBzcnNca8L0YjUJWq1Vc5araKgtATGFvSPGrz7POgQxc4dvE3FBHKOZVWxuk4UHinlXQhe92Lw5kP6USCIyavYieRVTF4FcJG8pszdMaPTkV9G-6mDtkp3xk8VOmf-Sf8AVyt_1w</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Kalloniatis, Alexander C.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140901</creationdate><title>Entropy and stability of phase synchronisation of oscillators on networks</title><author>Kalloniatis, Alexander C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-97043c1519d280133ed05170b1722cae6a475ababfad7ef6a25e0601317acba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>EIGENVECTORS</topic><topic>ENTROPY</topic><topic>HAMILTONIANS</topic><topic>Kuramoto</topic><topic>Laplace transforms</topic><topic>LAPLACIAN</topic><topic>Neural networks</topic><topic>Oscillator</topic><topic>OSCILLATORS</topic><topic>Pesin theorem</topic><topic>PHASE OSCILLATIONS</topic><topic>PHASE SPACE</topic><topic>Phase transitions</topic><topic>STABILITY</topic><topic>Synchronisation</topic><topic>SYNCHRONIZATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalloniatis, Alexander C.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalloniatis, Alexander C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy and stability of phase synchronisation of oscillators on networks</atitle><jtitle>Annals of physics</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>348</volume><spage>127</spage><epage>143</epage><pages>127-143</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>I examine the role of entropy in the transition from incoherence to phase synchronisation in the Kuramoto model of N coupled phase oscillators on a general undirected network. In a Hamiltonian ‘action-angle’ formulation, auxiliary variables Ji combine with the phases θi to determine a conserved system with a 2N dimensional phase space. In the vicinity of the fixed point for phase synchronisation, θi≈θj, which is known to be stable, the auxiliary variables Ji exhibit instability. This manifests Liouville’s Theorem in the phase synchronised regime in that contraction in the θi parts of phase space are compensated for by expansion in the auxiliary dimensions. I formulate an entropy rate based on the projection of the Ji onto eigenvectors of the graph Laplacian that satisfies Pesin’s Theorem. This leads to the insight that the evolution to phase synchronisation of the Kuramoto model is equivalent to the approach to a state of monotonically increasing entropy. Indeed, for unequal intrinsic frequencies on the nodes, the networks that achieve the closest to exact phase synchronisation are those which enjoy the highest entropy production. I compare numerical results for a range of networks.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2014.05.012</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4916 |
ispartof | Annals of physics, 2014-09, Vol.348, p.127-143 |
issn | 0003-4916 1096-035X |
language | eng |
recordid | cdi_osti_scitechconnect_22403382 |
source | ScienceDirect Freedom Collection |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS EIGENVECTORS ENTROPY HAMILTONIANS Kuramoto Laplace transforms LAPLACIAN Neural networks Oscillator OSCILLATORS Pesin theorem PHASE OSCILLATIONS PHASE SPACE Phase transitions STABILITY Synchronisation SYNCHRONIZATION |
title | Entropy and stability of phase synchronisation of oscillators on networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20and%20stability%20of%20phase%20synchronisation%20of%20oscillators%20on%20networks&rft.jtitle=Annals%20of%20physics&rft.au=Kalloniatis,%20Alexander%20C.&rft.date=2014-09-01&rft.volume=348&rft.spage=127&rft.epage=143&rft.pages=127-143&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2014.05.012&rft_dat=%3Cproquest_osti_%3E3393944281%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-97043c1519d280133ed05170b1722cae6a475ababfad7ef6a25e0601317acba03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551466377&rft_id=info:pmid/&rfr_iscdi=true |