Loading…
Effect of the electron energy distribution on total energy loss with argon in inductively coupled plasmas
The total energy lost per electron-ion pair lost εT is investigated with the electron energy distribution function (EEDF). The EEDFs are measured at various argon powers in RF inductively coupled plasma, and the EEDFs show a depleted distribution (a discontinuity occurring at the minimum argon excit...
Saved in:
Published in: | Physics of plasmas 2015-01, Vol.22 (1) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The total energy lost per electron-ion pair lost εT is investigated with the electron energy distribution function (EEDF). The EEDFs are measured at various argon powers in RF inductively coupled plasma, and the EEDFs show a depleted distribution (a discontinuity occurring at the minimum argon excitation threshold energy level) with the bulk temperature and the tail temperature. The total energy loss per electron-ion pair lost εT is calculated from a power balance model with the Maxwellian EEDFs and the depleted EEDFs and then compared with the measured εT from the floating probe. It is concluded that the small population of the depleted high energy electrons dramatically increases the collisional energy loss, and the calculated εT from the depleted EEDFs has a value that is similar to the measured εT. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.4905515 |