Loading…

Simulation study of nanoparticle coating in a low pressure plasma reactor

A self-consistent combination of plasma fluid model, nanoparticle heating model, and surface deposition model is used to investigate the coating of nanosize particles by amorphous carbon layers in a low pressure plasma reactor. The numerical results show that, owing to the net heat release in the su...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2015-02, Vol.22 (2)
Main Authors: Pourali, N., Foroutan, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A self-consistent combination of plasma fluid model, nanoparticle heating model, and surface deposition model is used to investigate the coating of nanosize particles by amorphous carbon layers in a low pressure plasma reactor. The numerical results show that, owing to the net heat release in the surface reactions, the particle temperature increases and its equilibrium value remains always 50 K above the background gas temperature. The deposition rate decreases with increasing of the particle temperature and the corresponding time scale is of the order of 10 ms. The deposition rate is also strongly affected by the change in plasma parameters. When the electron temperature is increased, the deposition rate first increases due to the enhanced ion and radical generation, shows a maximum and then declines as the particle temperature rises above the gas temperature. An enhancement in the background gas pressure and/or temperature leads to a reduction in the deposition rate, which can be explained in terms of the enhanced etching by atomic hydrogen and particle heating by the background gas.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4906881