Loading…
Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma
An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (Ne) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP genera...
Saved in:
Published in: | Journal of applied physics 2015-05, Vol.117 (20) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c285t-783fc6928c113444fb97d22f3796fb8c8229b77a84258253b74e1cd5aeca0ab63 |
---|---|
cites | cdi_FETCH-LOGICAL-c285t-783fc6928c113444fb97d22f3796fb8c8229b77a84258253b74e1cd5aeca0ab63 |
container_end_page | |
container_issue | 20 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 117 |
creator | Xiaolong, Wei Haojun, Xu Jianhai, Li Min, Lin Chen, Su |
description | An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (Ne) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm3 without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the Ne achieves nearly uniform within the electronegative core and sharply steepens in the edge. The Ne of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations. |
doi_str_mv | 10.1063/1.4921533 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22410241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124792891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-783fc6928c113444fb97d22f3796fb8c8229b77a84258253b74e1cd5aeca0ab63</originalsourceid><addsrcrecordid>eNpFkE1LAzEYhIMoWKsH_0HAk4et-dpNcpRSP6DgRY8Sstlsm7KbrEm20n_vlhY8DC8MDy8zA8A9RguMKvqEF0wSXFJ6AWYYCVnwskSXYIYQwYWQXF6Dm5R2CGEsqJyB71VnTY6h1xtvszPwV-8t1DlbP-rsgoe91WmMtrc-J-g81DA6vynSVg-2mYxmNNntbXeAJoxDN3naRTh0OvX6Fly1ukv27nzn4Otl9bl8K9Yfr-_L53VhiChzwQVtTSWJMBhTxlhbS94Q0lIuq7YWRhAia861YKQUpKQ1ZxabptTWaKTris7Bw-lvSNmpZFy2ZmuC91M3RQjDaNI_NcTwM9qU1S6M0U_BFMGE8SmAPFKPJ8rEkFK0rRqi63U8KIzUcWOF1Xlj-gfQdW3v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124792891</pqid></control><display><type>article</type><title>Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Xiaolong, Wei ; Haojun, Xu ; Jianhai, Li ; Min, Lin ; Chen, Su</creator><creatorcontrib>Xiaolong, Wei ; Haojun, Xu ; Jianhai, Li ; Min, Lin ; Chen, Su</creatorcontrib><description>An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (Ne) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm3 without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the Ne achieves nearly uniform within the electronegative core and sharply steepens in the edge. The Ne of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4921533</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; AIR ; Air plasma ; ANIONS ; Applied physics ; APPROXIMATIONS ; ATTENUATION ; COMPUTERIZED SIMULATION ; DIFFUSION ; Electromagnetic radiation ; ELECTRON DENSITY ; Electronegativity ; GHZ RANGE ; H-MODE PLASMA CONFINEMENT ; Inductively coupled plasma ; MAGNETIC FIELDS ; MICROWAVE RADIATION ; Negative ions ; PLASMA ; PLASMA DIAGNOSTICS ; PLASMA SIMULATION ; QUARTZ ; Radar echoes ; Radomes ; Wave attenuation</subject><ispartof>Journal of applied physics, 2015-05, Vol.117 (20)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-783fc6928c113444fb97d22f3796fb8c8229b77a84258253b74e1cd5aeca0ab63</citedby><cites>FETCH-LOGICAL-c285t-783fc6928c113444fb97d22f3796fb8c8229b77a84258253b74e1cd5aeca0ab63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22410241$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiaolong, Wei</creatorcontrib><creatorcontrib>Haojun, Xu</creatorcontrib><creatorcontrib>Jianhai, Li</creatorcontrib><creatorcontrib>Min, Lin</creatorcontrib><creatorcontrib>Chen, Su</creatorcontrib><title>Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma</title><title>Journal of applied physics</title><description>An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (Ne) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm3 without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the Ne achieves nearly uniform within the electronegative core and sharply steepens in the edge. The Ne of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>AIR</subject><subject>Air plasma</subject><subject>ANIONS</subject><subject>Applied physics</subject><subject>APPROXIMATIONS</subject><subject>ATTENUATION</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DIFFUSION</subject><subject>Electromagnetic radiation</subject><subject>ELECTRON DENSITY</subject><subject>Electronegativity</subject><subject>GHZ RANGE</subject><subject>H-MODE PLASMA CONFINEMENT</subject><subject>Inductively coupled plasma</subject><subject>MAGNETIC FIELDS</subject><subject>MICROWAVE RADIATION</subject><subject>Negative ions</subject><subject>PLASMA</subject><subject>PLASMA DIAGNOSTICS</subject><subject>PLASMA SIMULATION</subject><subject>QUARTZ</subject><subject>Radar echoes</subject><subject>Radomes</subject><subject>Wave attenuation</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEYhIMoWKsH_0HAk4et-dpNcpRSP6DgRY8Sstlsm7KbrEm20n_vlhY8DC8MDy8zA8A9RguMKvqEF0wSXFJ6AWYYCVnwskSXYIYQwYWQXF6Dm5R2CGEsqJyB71VnTY6h1xtvszPwV-8t1DlbP-rsgoe91WmMtrc-J-g81DA6vynSVg-2mYxmNNntbXeAJoxDN3naRTh0OvX6Fly1ukv27nzn4Otl9bl8K9Yfr-_L53VhiChzwQVtTSWJMBhTxlhbS94Q0lIuq7YWRhAia861YKQUpKQ1ZxabptTWaKTris7Bw-lvSNmpZFy2ZmuC91M3RQjDaNI_NcTwM9qU1S6M0U_BFMGE8SmAPFKPJ8rEkFK0rRqi63U8KIzUcWOF1Xlj-gfQdW3v</recordid><startdate>20150528</startdate><enddate>20150528</enddate><creator>Xiaolong, Wei</creator><creator>Haojun, Xu</creator><creator>Jianhai, Li</creator><creator>Min, Lin</creator><creator>Chen, Su</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150528</creationdate><title>Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma</title><author>Xiaolong, Wei ; Haojun, Xu ; Jianhai, Li ; Min, Lin ; Chen, Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-783fc6928c113444fb97d22f3796fb8c8229b77a84258253b74e1cd5aeca0ab63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>AIR</topic><topic>Air plasma</topic><topic>ANIONS</topic><topic>Applied physics</topic><topic>APPROXIMATIONS</topic><topic>ATTENUATION</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DIFFUSION</topic><topic>Electromagnetic radiation</topic><topic>ELECTRON DENSITY</topic><topic>Electronegativity</topic><topic>GHZ RANGE</topic><topic>H-MODE PLASMA CONFINEMENT</topic><topic>Inductively coupled plasma</topic><topic>MAGNETIC FIELDS</topic><topic>MICROWAVE RADIATION</topic><topic>Negative ions</topic><topic>PLASMA</topic><topic>PLASMA DIAGNOSTICS</topic><topic>PLASMA SIMULATION</topic><topic>QUARTZ</topic><topic>Radar echoes</topic><topic>Radomes</topic><topic>Wave attenuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiaolong, Wei</creatorcontrib><creatorcontrib>Haojun, Xu</creatorcontrib><creatorcontrib>Jianhai, Li</creatorcontrib><creatorcontrib>Min, Lin</creatorcontrib><creatorcontrib>Chen, Su</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiaolong, Wei</au><au>Haojun, Xu</au><au>Jianhai, Li</au><au>Min, Lin</au><au>Chen, Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma</atitle><jtitle>Journal of applied physics</jtitle><date>2015-05-28</date><risdate>2015</risdate><volume>117</volume><issue>20</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (Ne) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm3 without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the Ne achieves nearly uniform within the electronegative core and sharply steepens in the edge. The Ne of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4921533</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2015-05, Vol.117 (20) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_22410241 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY AIR Air plasma ANIONS Applied physics APPROXIMATIONS ATTENUATION COMPUTERIZED SIMULATION DIFFUSION Electromagnetic radiation ELECTRON DENSITY Electronegativity GHZ RANGE H-MODE PLASMA CONFINEMENT Inductively coupled plasma MAGNETIC FIELDS MICROWAVE RADIATION Negative ions PLASMA PLASMA DIAGNOSTICS PLASMA SIMULATION QUARTZ Radar echoes Radomes Wave attenuation |
title | Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20wave%20attenuation%20measurements%20in%20a%20ring-shaped%20inductively%20coupled%20air%20plasma&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Xiaolong,%20Wei&rft.date=2015-05-28&rft.volume=117&rft.issue=20&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4921533&rft_dat=%3Cproquest_osti_%3E2124792891%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-783fc6928c113444fb97d22f3796fb8c8229b77a84258253b74e1cd5aeca0ab63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124792891&rft_id=info:pmid/&rfr_iscdi=true |