Loading…

Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma

An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (Ne) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP genera...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2015-05, Vol.117 (20)
Main Authors: Xiaolong, Wei, Haojun, Xu, Jianhai, Li, Min, Lin, Chen, Su
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c285t-783fc6928c113444fb97d22f3796fb8c8229b77a84258253b74e1cd5aeca0ab63
cites cdi_FETCH-LOGICAL-c285t-783fc6928c113444fb97d22f3796fb8c8229b77a84258253b74e1cd5aeca0ab63
container_end_page
container_issue 20
container_start_page
container_title Journal of applied physics
container_volume 117
creator Xiaolong, Wei
Haojun, Xu
Jianhai, Li
Min, Lin
Chen, Su
description An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (Ne) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm3 without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the Ne achieves nearly uniform within the electronegative core and sharply steepens in the edge. The Ne of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.
doi_str_mv 10.1063/1.4921533
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22410241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124792891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-783fc6928c113444fb97d22f3796fb8c8229b77a84258253b74e1cd5aeca0ab63</originalsourceid><addsrcrecordid>eNpFkE1LAzEYhIMoWKsH_0HAk4et-dpNcpRSP6DgRY8Sstlsm7KbrEm20n_vlhY8DC8MDy8zA8A9RguMKvqEF0wSXFJ6AWYYCVnwskSXYIYQwYWQXF6Dm5R2CGEsqJyB71VnTY6h1xtvszPwV-8t1DlbP-rsgoe91WmMtrc-J-g81DA6vynSVg-2mYxmNNntbXeAJoxDN3naRTh0OvX6Fly1ukv27nzn4Otl9bl8K9Yfr-_L53VhiChzwQVtTSWJMBhTxlhbS94Q0lIuq7YWRhAia861YKQUpKQ1ZxabptTWaKTris7Bw-lvSNmpZFy2ZmuC91M3RQjDaNI_NcTwM9qU1S6M0U_BFMGE8SmAPFKPJ8rEkFK0rRqi63U8KIzUcWOF1Xlj-gfQdW3v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124792891</pqid></control><display><type>article</type><title>Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Xiaolong, Wei ; Haojun, Xu ; Jianhai, Li ; Min, Lin ; Chen, Su</creator><creatorcontrib>Xiaolong, Wei ; Haojun, Xu ; Jianhai, Li ; Min, Lin ; Chen, Su</creatorcontrib><description>An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (Ne) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm3 without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the Ne achieves nearly uniform within the electronegative core and sharply steepens in the edge. The Ne of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4921533</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; AIR ; Air plasma ; ANIONS ; Applied physics ; APPROXIMATIONS ; ATTENUATION ; COMPUTERIZED SIMULATION ; DIFFUSION ; Electromagnetic radiation ; ELECTRON DENSITY ; Electronegativity ; GHZ RANGE ; H-MODE PLASMA CONFINEMENT ; Inductively coupled plasma ; MAGNETIC FIELDS ; MICROWAVE RADIATION ; Negative ions ; PLASMA ; PLASMA DIAGNOSTICS ; PLASMA SIMULATION ; QUARTZ ; Radar echoes ; Radomes ; Wave attenuation</subject><ispartof>Journal of applied physics, 2015-05, Vol.117 (20)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-783fc6928c113444fb97d22f3796fb8c8229b77a84258253b74e1cd5aeca0ab63</citedby><cites>FETCH-LOGICAL-c285t-783fc6928c113444fb97d22f3796fb8c8229b77a84258253b74e1cd5aeca0ab63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22410241$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiaolong, Wei</creatorcontrib><creatorcontrib>Haojun, Xu</creatorcontrib><creatorcontrib>Jianhai, Li</creatorcontrib><creatorcontrib>Min, Lin</creatorcontrib><creatorcontrib>Chen, Su</creatorcontrib><title>Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma</title><title>Journal of applied physics</title><description>An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (Ne) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm3 without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the Ne achieves nearly uniform within the electronegative core and sharply steepens in the edge. The Ne of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>AIR</subject><subject>Air plasma</subject><subject>ANIONS</subject><subject>Applied physics</subject><subject>APPROXIMATIONS</subject><subject>ATTENUATION</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DIFFUSION</subject><subject>Electromagnetic radiation</subject><subject>ELECTRON DENSITY</subject><subject>Electronegativity</subject><subject>GHZ RANGE</subject><subject>H-MODE PLASMA CONFINEMENT</subject><subject>Inductively coupled plasma</subject><subject>MAGNETIC FIELDS</subject><subject>MICROWAVE RADIATION</subject><subject>Negative ions</subject><subject>PLASMA</subject><subject>PLASMA DIAGNOSTICS</subject><subject>PLASMA SIMULATION</subject><subject>QUARTZ</subject><subject>Radar echoes</subject><subject>Radomes</subject><subject>Wave attenuation</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEYhIMoWKsH_0HAk4et-dpNcpRSP6DgRY8Sstlsm7KbrEm20n_vlhY8DC8MDy8zA8A9RguMKvqEF0wSXFJ6AWYYCVnwskSXYIYQwYWQXF6Dm5R2CGEsqJyB71VnTY6h1xtvszPwV-8t1DlbP-rsgoe91WmMtrc-J-g81DA6vynSVg-2mYxmNNntbXeAJoxDN3naRTh0OvX6Fly1ukv27nzn4Otl9bl8K9Yfr-_L53VhiChzwQVtTSWJMBhTxlhbS94Q0lIuq7YWRhAia861YKQUpKQ1ZxabptTWaKTris7Bw-lvSNmpZFy2ZmuC91M3RQjDaNI_NcTwM9qU1S6M0U_BFMGE8SmAPFKPJ8rEkFK0rRqi63U8KIzUcWOF1Xlj-gfQdW3v</recordid><startdate>20150528</startdate><enddate>20150528</enddate><creator>Xiaolong, Wei</creator><creator>Haojun, Xu</creator><creator>Jianhai, Li</creator><creator>Min, Lin</creator><creator>Chen, Su</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150528</creationdate><title>Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma</title><author>Xiaolong, Wei ; Haojun, Xu ; Jianhai, Li ; Min, Lin ; Chen, Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-783fc6928c113444fb97d22f3796fb8c8229b77a84258253b74e1cd5aeca0ab63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>AIR</topic><topic>Air plasma</topic><topic>ANIONS</topic><topic>Applied physics</topic><topic>APPROXIMATIONS</topic><topic>ATTENUATION</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DIFFUSION</topic><topic>Electromagnetic radiation</topic><topic>ELECTRON DENSITY</topic><topic>Electronegativity</topic><topic>GHZ RANGE</topic><topic>H-MODE PLASMA CONFINEMENT</topic><topic>Inductively coupled plasma</topic><topic>MAGNETIC FIELDS</topic><topic>MICROWAVE RADIATION</topic><topic>Negative ions</topic><topic>PLASMA</topic><topic>PLASMA DIAGNOSTICS</topic><topic>PLASMA SIMULATION</topic><topic>QUARTZ</topic><topic>Radar echoes</topic><topic>Radomes</topic><topic>Wave attenuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiaolong, Wei</creatorcontrib><creatorcontrib>Haojun, Xu</creatorcontrib><creatorcontrib>Jianhai, Li</creatorcontrib><creatorcontrib>Min, Lin</creatorcontrib><creatorcontrib>Chen, Su</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiaolong, Wei</au><au>Haojun, Xu</au><au>Jianhai, Li</au><au>Min, Lin</au><au>Chen, Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma</atitle><jtitle>Journal of applied physics</jtitle><date>2015-05-28</date><risdate>2015</risdate><volume>117</volume><issue>20</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (Ne) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm3 without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the Ne achieves nearly uniform within the electronegative core and sharply steepens in the edge. The Ne of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4921533</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2015-05, Vol.117 (20)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22410241
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
AIR
Air plasma
ANIONS
Applied physics
APPROXIMATIONS
ATTENUATION
COMPUTERIZED SIMULATION
DIFFUSION
Electromagnetic radiation
ELECTRON DENSITY
Electronegativity
GHZ RANGE
H-MODE PLASMA CONFINEMENT
Inductively coupled plasma
MAGNETIC FIELDS
MICROWAVE RADIATION
Negative ions
PLASMA
PLASMA DIAGNOSTICS
PLASMA SIMULATION
QUARTZ
Radar echoes
Radomes
Wave attenuation
title Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20wave%20attenuation%20measurements%20in%20a%20ring-shaped%20inductively%20coupled%20air%20plasma&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Xiaolong,%20Wei&rft.date=2015-05-28&rft.volume=117&rft.issue=20&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4921533&rft_dat=%3Cproquest_osti_%3E2124792891%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-783fc6928c113444fb97d22f3796fb8c8229b77a84258253b74e1cd5aeca0ab63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124792891&rft_id=info:pmid/&rfr_iscdi=true