Loading…
Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations
Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solu...
Saved in:
Published in: | The Journal of chemical physics 2015-03, Vol.142 (10), p.104108-104108 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c341t-25795cb4c7785f15b2d4c76fb6698a3669814e8e62a86c3cb2d49166e7af83ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c341t-25795cb4c7785f15b2d4c76fb6698a3669814e8e62a86c3cb2d49166e7af83ea3 |
container_end_page | 104108 |
container_issue | 10 |
container_start_page | 104108 |
container_title | The Journal of chemical physics |
container_volume | 142 |
creator | Schwörer, Magnus Lorenzen, Konstantin Mathias, Gerald Tavan, Paul |
description | Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online. |
doi_str_mv | 10.1063/1.4914329 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22415495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124855517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-25795cb4c7785f15b2d4c76fb6698a3669814e8e62a86c3cb2d49166e7af83ea3</originalsourceid><addsrcrecordid>eNpFkU1rVDEUhoNY7Fhd-Ack4KYubk1y83GzlGJVKLhp1yFzJtGU3GSaD7D-ejPMWDc5gfOch3N4EXpHyRUlcv5Er7imfGb6BdpQsuhJSU1eog0hjE5aEnmOXtf6QAihivFX6JwJpYhgaoPyfQsx_AnpJ_a2Nrz22MI-R4fd771NNeRUsc8FO-8DBJcatmmHLUAvtjn82G1qfZ0g2loD2IjXMQw92oJ3T8muASquYWhtO7jeoDNvY3VvT_UC3d98ubv-Nt3--Pr9-vPtBDOnbRoLagFbDkotwlOxZbvxl34rpV7sfHgpd4uTzC4SZjj0NZXSKeuX2dn5An04enNtwVQIzcEvyCk5aIYxTgXXYlCXR2pf8mN3tZk1VHAx2uRyr2YYOdVaEP1f-Iw-5F7SuMEwyvgihKBqUB-PFJRca3He7EtYbXkylJhDVoaaU1aDfX8y9u3qds_kv3Dmv-NVjs4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124855517</pqid></control><display><type>article</type><title>Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Schwörer, Magnus ; Lorenzen, Konstantin ; Mathias, Gerald ; Tavan, Paul</creator><creatorcontrib>Schwörer, Magnus ; Lorenzen, Konstantin ; Mathias, Gerald ; Tavan, Paul</creatorcontrib><description>Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4914329</identifier><identifier>PMID: 25770527</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>ACCURACY ; Alanine ; ALANINES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer simulation ; DENSITY FUNCTIONAL METHOD ; Density functional theory ; EFFICIENCY ; GAIN ; HAMILTONIANS ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Mechanics ; Molecular dynamics ; MOLECULAR DYNAMICS METHOD ; MOLECULES ; Parallel processing ; Physics ; QUANTUM MECHANICS ; Simulation ; SOLUTES ; SOLVENTS ; WATER</subject><ispartof>The Journal of chemical physics, 2015-03, Vol.142 (10), p.104108-104108</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-25795cb4c7785f15b2d4c76fb6698a3669814e8e62a86c3cb2d49166e7af83ea3</citedby><cites>FETCH-LOGICAL-c341t-25795cb4c7785f15b2d4c76fb6698a3669814e8e62a86c3cb2d49166e7af83ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,782,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25770527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22415495$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwörer, Magnus</creatorcontrib><creatorcontrib>Lorenzen, Konstantin</creatorcontrib><creatorcontrib>Mathias, Gerald</creatorcontrib><creatorcontrib>Tavan, Paul</creatorcontrib><title>Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.</description><subject>ACCURACY</subject><subject>Alanine</subject><subject>ALANINES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer simulation</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>Density functional theory</subject><subject>EFFICIENCY</subject><subject>GAIN</subject><subject>HAMILTONIANS</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Mechanics</subject><subject>Molecular dynamics</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>MOLECULES</subject><subject>Parallel processing</subject><subject>Physics</subject><subject>QUANTUM MECHANICS</subject><subject>Simulation</subject><subject>SOLUTES</subject><subject>SOLVENTS</subject><subject>WATER</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkU1rVDEUhoNY7Fhd-Ack4KYubk1y83GzlGJVKLhp1yFzJtGU3GSaD7D-ejPMWDc5gfOch3N4EXpHyRUlcv5Er7imfGb6BdpQsuhJSU1eog0hjE5aEnmOXtf6QAihivFX6JwJpYhgaoPyfQsx_AnpJ_a2Nrz22MI-R4fd771NNeRUsc8FO-8DBJcatmmHLUAvtjn82G1qfZ0g2loD2IjXMQw92oJ3T8muASquYWhtO7jeoDNvY3VvT_UC3d98ubv-Nt3--Pr9-vPtBDOnbRoLagFbDkotwlOxZbvxl34rpV7sfHgpd4uTzC4SZjj0NZXSKeuX2dn5An04enNtwVQIzcEvyCk5aIYxTgXXYlCXR2pf8mN3tZk1VHAx2uRyr2YYOdVaEP1f-Iw-5F7SuMEwyvgihKBqUB-PFJRca3He7EtYbXkylJhDVoaaU1aDfX8y9u3qds_kv3Dmv-NVjs4</recordid><startdate>20150314</startdate><enddate>20150314</enddate><creator>Schwörer, Magnus</creator><creator>Lorenzen, Konstantin</creator><creator>Mathias, Gerald</creator><creator>Tavan, Paul</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20150314</creationdate><title>Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations</title><author>Schwörer, Magnus ; Lorenzen, Konstantin ; Mathias, Gerald ; Tavan, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-25795cb4c7785f15b2d4c76fb6698a3669814e8e62a86c3cb2d49166e7af83ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ACCURACY</topic><topic>Alanine</topic><topic>ALANINES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer simulation</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>Density functional theory</topic><topic>EFFICIENCY</topic><topic>GAIN</topic><topic>HAMILTONIANS</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Mechanics</topic><topic>Molecular dynamics</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>MOLECULES</topic><topic>Parallel processing</topic><topic>Physics</topic><topic>QUANTUM MECHANICS</topic><topic>Simulation</topic><topic>SOLUTES</topic><topic>SOLVENTS</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwörer, Magnus</creatorcontrib><creatorcontrib>Lorenzen, Konstantin</creatorcontrib><creatorcontrib>Mathias, Gerald</creatorcontrib><creatorcontrib>Tavan, Paul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwörer, Magnus</au><au>Lorenzen, Konstantin</au><au>Mathias, Gerald</au><au>Tavan, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-03-14</date><risdate>2015</risdate><volume>142</volume><issue>10</issue><spage>104108</spage><epage>104108</epage><pages>104108-104108</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25770527</pmid><doi>10.1063/1.4914329</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2015-03, Vol.142 (10), p.104108-104108 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_22415495 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | ACCURACY Alanine ALANINES CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computer simulation DENSITY FUNCTIONAL METHOD Density functional theory EFFICIENCY GAIN HAMILTONIANS INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Mechanics Molecular dynamics MOLECULAR DYNAMICS METHOD MOLECULES Parallel processing Physics QUANTUM MECHANICS Simulation SOLUTES SOLVENTS WATER |
title | Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20fast%20multipole%20expansions%20for%20efficient%20and%20accurate%20quantum-classical%20molecular%20dynamics%20simulations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Schw%C3%B6rer,%20Magnus&rft.date=2015-03-14&rft.volume=142&rft.issue=10&rft.spage=104108&rft.epage=104108&rft.pages=104108-104108&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4914329&rft_dat=%3Cproquest_osti_%3E2124855517%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-25795cb4c7785f15b2d4c76fb6698a3669814e8e62a86c3cb2d49166e7af83ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124855517&rft_id=info:pmid/25770527&rfr_iscdi=true |