Loading…

Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations

Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solu...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2015-03, Vol.142 (10), p.104108-104108
Main Authors: Schwörer, Magnus, Lorenzen, Konstantin, Mathias, Gerald, Tavan, Paul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c341t-25795cb4c7785f15b2d4c76fb6698a3669814e8e62a86c3cb2d49166e7af83ea3
cites cdi_FETCH-LOGICAL-c341t-25795cb4c7785f15b2d4c76fb6698a3669814e8e62a86c3cb2d49166e7af83ea3
container_end_page 104108
container_issue 10
container_start_page 104108
container_title The Journal of chemical physics
container_volume 142
creator Schwörer, Magnus
Lorenzen, Konstantin
Mathias, Gerald
Tavan, Paul
description Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.
doi_str_mv 10.1063/1.4914329
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22415495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124855517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-25795cb4c7785f15b2d4c76fb6698a3669814e8e62a86c3cb2d49166e7af83ea3</originalsourceid><addsrcrecordid>eNpFkU1rVDEUhoNY7Fhd-Ack4KYubk1y83GzlGJVKLhp1yFzJtGU3GSaD7D-ejPMWDc5gfOch3N4EXpHyRUlcv5Er7imfGb6BdpQsuhJSU1eog0hjE5aEnmOXtf6QAihivFX6JwJpYhgaoPyfQsx_AnpJ_a2Nrz22MI-R4fd771NNeRUsc8FO-8DBJcatmmHLUAvtjn82G1qfZ0g2loD2IjXMQw92oJ3T8muASquYWhtO7jeoDNvY3VvT_UC3d98ubv-Nt3--Pr9-vPtBDOnbRoLagFbDkotwlOxZbvxl34rpV7sfHgpd4uTzC4SZjj0NZXSKeuX2dn5An04enNtwVQIzcEvyCk5aIYxTgXXYlCXR2pf8mN3tZk1VHAx2uRyr2YYOdVaEP1f-Iw-5F7SuMEwyvgihKBqUB-PFJRca3He7EtYbXkylJhDVoaaU1aDfX8y9u3qds_kv3Dmv-NVjs4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124855517</pqid></control><display><type>article</type><title>Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Schwörer, Magnus ; Lorenzen, Konstantin ; Mathias, Gerald ; Tavan, Paul</creator><creatorcontrib>Schwörer, Magnus ; Lorenzen, Konstantin ; Mathias, Gerald ; Tavan, Paul</creatorcontrib><description>Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4914329</identifier><identifier>PMID: 25770527</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>ACCURACY ; Alanine ; ALANINES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer simulation ; DENSITY FUNCTIONAL METHOD ; Density functional theory ; EFFICIENCY ; GAIN ; HAMILTONIANS ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Mechanics ; Molecular dynamics ; MOLECULAR DYNAMICS METHOD ; MOLECULES ; Parallel processing ; Physics ; QUANTUM MECHANICS ; Simulation ; SOLUTES ; SOLVENTS ; WATER</subject><ispartof>The Journal of chemical physics, 2015-03, Vol.142 (10), p.104108-104108</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-25795cb4c7785f15b2d4c76fb6698a3669814e8e62a86c3cb2d49166e7af83ea3</citedby><cites>FETCH-LOGICAL-c341t-25795cb4c7785f15b2d4c76fb6698a3669814e8e62a86c3cb2d49166e7af83ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,782,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25770527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22415495$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwörer, Magnus</creatorcontrib><creatorcontrib>Lorenzen, Konstantin</creatorcontrib><creatorcontrib>Mathias, Gerald</creatorcontrib><creatorcontrib>Tavan, Paul</creatorcontrib><title>Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.</description><subject>ACCURACY</subject><subject>Alanine</subject><subject>ALANINES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer simulation</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>Density functional theory</subject><subject>EFFICIENCY</subject><subject>GAIN</subject><subject>HAMILTONIANS</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Mechanics</subject><subject>Molecular dynamics</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>MOLECULES</subject><subject>Parallel processing</subject><subject>Physics</subject><subject>QUANTUM MECHANICS</subject><subject>Simulation</subject><subject>SOLUTES</subject><subject>SOLVENTS</subject><subject>WATER</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkU1rVDEUhoNY7Fhd-Ack4KYubk1y83GzlGJVKLhp1yFzJtGU3GSaD7D-ejPMWDc5gfOch3N4EXpHyRUlcv5Er7imfGb6BdpQsuhJSU1eog0hjE5aEnmOXtf6QAihivFX6JwJpYhgaoPyfQsx_AnpJ_a2Nrz22MI-R4fd771NNeRUsc8FO-8DBJcatmmHLUAvtjn82G1qfZ0g2loD2IjXMQw92oJ3T8muASquYWhtO7jeoDNvY3VvT_UC3d98ubv-Nt3--Pr9-vPtBDOnbRoLagFbDkotwlOxZbvxl34rpV7sfHgpd4uTzC4SZjj0NZXSKeuX2dn5An04enNtwVQIzcEvyCk5aIYxTgXXYlCXR2pf8mN3tZk1VHAx2uRyr2YYOdVaEP1f-Iw-5F7SuMEwyvgihKBqUB-PFJRca3He7EtYbXkylJhDVoaaU1aDfX8y9u3qds_kv3Dmv-NVjs4</recordid><startdate>20150314</startdate><enddate>20150314</enddate><creator>Schwörer, Magnus</creator><creator>Lorenzen, Konstantin</creator><creator>Mathias, Gerald</creator><creator>Tavan, Paul</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20150314</creationdate><title>Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations</title><author>Schwörer, Magnus ; Lorenzen, Konstantin ; Mathias, Gerald ; Tavan, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-25795cb4c7785f15b2d4c76fb6698a3669814e8e62a86c3cb2d49166e7af83ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ACCURACY</topic><topic>Alanine</topic><topic>ALANINES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer simulation</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>Density functional theory</topic><topic>EFFICIENCY</topic><topic>GAIN</topic><topic>HAMILTONIANS</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Mechanics</topic><topic>Molecular dynamics</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>MOLECULES</topic><topic>Parallel processing</topic><topic>Physics</topic><topic>QUANTUM MECHANICS</topic><topic>Simulation</topic><topic>SOLUTES</topic><topic>SOLVENTS</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwörer, Magnus</creatorcontrib><creatorcontrib>Lorenzen, Konstantin</creatorcontrib><creatorcontrib>Mathias, Gerald</creatorcontrib><creatorcontrib>Tavan, Paul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwörer, Magnus</au><au>Lorenzen, Konstantin</au><au>Mathias, Gerald</au><au>Tavan, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-03-14</date><risdate>2015</risdate><volume>142</volume><issue>10</issue><spage>104108</spage><epage>104108</epage><pages>104108-104108</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25770527</pmid><doi>10.1063/1.4914329</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2015-03, Vol.142 (10), p.104108-104108
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_22415495
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects ACCURACY
Alanine
ALANINES
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computer simulation
DENSITY FUNCTIONAL METHOD
Density functional theory
EFFICIENCY
GAIN
HAMILTONIANS
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
Mechanics
Molecular dynamics
MOLECULAR DYNAMICS METHOD
MOLECULES
Parallel processing
Physics
QUANTUM MECHANICS
Simulation
SOLUTES
SOLVENTS
WATER
title Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20fast%20multipole%20expansions%20for%20efficient%20and%20accurate%20quantum-classical%20molecular%20dynamics%20simulations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Schw%C3%B6rer,%20Magnus&rft.date=2015-03-14&rft.volume=142&rft.issue=10&rft.spage=104108&rft.epage=104108&rft.pages=104108-104108&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4914329&rft_dat=%3Cproquest_osti_%3E2124855517%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-25795cb4c7785f15b2d4c76fb6698a3669814e8e62a86c3cb2d49166e7af83ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124855517&rft_id=info:pmid/25770527&rfr_iscdi=true