Loading…

Rubber friction on road surfaces: Experiment and theory for low sliding speeds

We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2015-05, Vol.142 (19), p.194701-194701
Main Authors: Lorenz, B, Oh, Y R, Nam, S K, Jeon, S H, Persson, B N J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-bdee28e88e3a83c4f5213acc61024f72c1b5cf7eafc85aa0118f86f947be22213
cites cdi_FETCH-LOGICAL-c313t-bdee28e88e3a83c4f5213acc61024f72c1b5cf7eafc85aa0118f86f947be22213
container_end_page 194701
container_issue 19
container_start_page 194701
container_title The Journal of chemical physics
container_volume 142
creator Lorenz, B
Oh, Y R
Nam, S K
Jeon, S H
Persson, B N J
description We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, there is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach.
doi_str_mv 10.1063/1.4919221
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22415805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1683076592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-bdee28e88e3a83c4f5213acc61024f72c1b5cf7eafc85aa0118f86f947be22213</originalsourceid><addsrcrecordid>eNo9kE1LxDAURYMoOo4u_AMScKOLjnlJm6buZBg_YFAQXYc0fXEqnaYmLTr_3sqMwoP7FocL9xByBmwGTIprmKUFFJzDHpkAU0WSy4LtkwljHJJCMnlEjmP8YIxBztNDcsTl-KYyn5Cnl6EsMVAXatvXvqXjBW8qGofgjMV4QxffHYZ6jW1PTVvRfoU-bKjzgTb-i8amrur2ncYOsYon5MCZJuLpLqfk7W7xOn9Ils_3j_PbZWIFiD4pK0SuUCkURgmbuoyDMNZKYDx1ObdQZtblaJxVmTEMQDklXZHmJfJxp5iSi22vj32to617tCvr2xZtrzlPIVMsG6nLLdUF_zlg7PW6jhabxrToh6hBKsFymRV8RK-2qA0-xoBOd-NmEzYamP6VrEHvJI_s-a52KNdY_ZN_VsUPH0Z1rw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683076592</pqid></control><display><type>article</type><title>Rubber friction on road surfaces: Experiment and theory for low sliding speeds</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Lorenz, B ; Oh, Y R ; Nam, S K ; Jeon, S H ; Persson, B N J</creator><creatorcontrib>Lorenz, B ; Oh, Y R ; Nam, S K ; Jeon, S H ; Persson, B N J</creatorcontrib><description>We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, there is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4919221</identifier><identifier>PMID: 26001467</identifier><language>eng</language><publisher>United States</publisher><subject>ASPHALTS ; ATOMIC FORCE MICROSCOPY ; BONDING ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPARATIVE EVALUATIONS ; DEFORMATION ; ELASTICITY ; FRICTION ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; MECHANICS ; MOLECULES ; ROUGHNESS ; RUBBERS ; SHEAR ; STRAINS ; SURFACES ; TIRES ; TOPOGRAPHY ; VELOCITY</subject><ispartof>The Journal of chemical physics, 2015-05, Vol.142 (19), p.194701-194701</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-bdee28e88e3a83c4f5213acc61024f72c1b5cf7eafc85aa0118f86f947be22213</citedby><cites>FETCH-LOGICAL-c313t-bdee28e88e3a83c4f5213acc61024f72c1b5cf7eafc85aa0118f86f947be22213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26001467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22415805$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lorenz, B</creatorcontrib><creatorcontrib>Oh, Y R</creatorcontrib><creatorcontrib>Nam, S K</creatorcontrib><creatorcontrib>Jeon, S H</creatorcontrib><creatorcontrib>Persson, B N J</creatorcontrib><title>Rubber friction on road surfaces: Experiment and theory for low sliding speeds</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, there is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach.</description><subject>ASPHALTS</subject><subject>ATOMIC FORCE MICROSCOPY</subject><subject>BONDING</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>DEFORMATION</subject><subject>ELASTICITY</subject><subject>FRICTION</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>MECHANICS</subject><subject>MOLECULES</subject><subject>ROUGHNESS</subject><subject>RUBBERS</subject><subject>SHEAR</subject><subject>STRAINS</subject><subject>SURFACES</subject><subject>TIRES</subject><subject>TOPOGRAPHY</subject><subject>VELOCITY</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAURYMoOo4u_AMScKOLjnlJm6buZBg_YFAQXYc0fXEqnaYmLTr_3sqMwoP7FocL9xByBmwGTIprmKUFFJzDHpkAU0WSy4LtkwljHJJCMnlEjmP8YIxBztNDcsTl-KYyn5Cnl6EsMVAXatvXvqXjBW8qGofgjMV4QxffHYZ6jW1PTVvRfoU-bKjzgTb-i8amrur2ncYOsYon5MCZJuLpLqfk7W7xOn9Ils_3j_PbZWIFiD4pK0SuUCkURgmbuoyDMNZKYDx1ObdQZtblaJxVmTEMQDklXZHmJfJxp5iSi22vj32to617tCvr2xZtrzlPIVMsG6nLLdUF_zlg7PW6jhabxrToh6hBKsFymRV8RK-2qA0-xoBOd-NmEzYamP6VrEHvJI_s-a52KNdY_ZN_VsUPH0Z1rw</recordid><startdate>20150521</startdate><enddate>20150521</enddate><creator>Lorenz, B</creator><creator>Oh, Y R</creator><creator>Nam, S K</creator><creator>Jeon, S H</creator><creator>Persson, B N J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20150521</creationdate><title>Rubber friction on road surfaces: Experiment and theory for low sliding speeds</title><author>Lorenz, B ; Oh, Y R ; Nam, S K ; Jeon, S H ; Persson, B N J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-bdee28e88e3a83c4f5213acc61024f72c1b5cf7eafc85aa0118f86f947be22213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ASPHALTS</topic><topic>ATOMIC FORCE MICROSCOPY</topic><topic>BONDING</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>DEFORMATION</topic><topic>ELASTICITY</topic><topic>FRICTION</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>MECHANICS</topic><topic>MOLECULES</topic><topic>ROUGHNESS</topic><topic>RUBBERS</topic><topic>SHEAR</topic><topic>STRAINS</topic><topic>SURFACES</topic><topic>TIRES</topic><topic>TOPOGRAPHY</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lorenz, B</creatorcontrib><creatorcontrib>Oh, Y R</creatorcontrib><creatorcontrib>Nam, S K</creatorcontrib><creatorcontrib>Jeon, S H</creatorcontrib><creatorcontrib>Persson, B N J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lorenz, B</au><au>Oh, Y R</au><au>Nam, S K</au><au>Jeon, S H</au><au>Persson, B N J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rubber friction on road surfaces: Experiment and theory for low sliding speeds</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-05-21</date><risdate>2015</risdate><volume>142</volume><issue>19</issue><spage>194701</spage><epage>194701</epage><pages>194701-194701</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, there is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach.</abstract><cop>United States</cop><pmid>26001467</pmid><doi>10.1063/1.4919221</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2015-05, Vol.142 (19), p.194701-194701
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_22415805
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects ASPHALTS
ATOMIC FORCE MICROSCOPY
BONDING
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COMPARATIVE EVALUATIONS
DEFORMATION
ELASTICITY
FRICTION
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
MECHANICS
MOLECULES
ROUGHNESS
RUBBERS
SHEAR
STRAINS
SURFACES
TIRES
TOPOGRAPHY
VELOCITY
title Rubber friction on road surfaces: Experiment and theory for low sliding speeds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T03%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rubber%20friction%20on%20road%20surfaces:%20Experiment%20and%20theory%20for%20low%20sliding%20speeds&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Lorenz,%20B&rft.date=2015-05-21&rft.volume=142&rft.issue=19&rft.spage=194701&rft.epage=194701&rft.pages=194701-194701&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4919221&rft_dat=%3Cproquest_osti_%3E1683076592%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-bdee28e88e3a83c4f5213acc61024f72c1b5cf7eafc85aa0118f86f947be22213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1683076592&rft_id=info:pmid/26001467&rfr_iscdi=true