Loading…
Rubber friction on road surfaces: Experiment and theory for low sliding speeds
We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic...
Saved in:
Published in: | The Journal of chemical physics 2015-05, Vol.142 (19), p.194701-194701 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c313t-bdee28e88e3a83c4f5213acc61024f72c1b5cf7eafc85aa0118f86f947be22213 |
---|---|
cites | cdi_FETCH-LOGICAL-c313t-bdee28e88e3a83c4f5213acc61024f72c1b5cf7eafc85aa0118f86f947be22213 |
container_end_page | 194701 |
container_issue | 19 |
container_start_page | 194701 |
container_title | The Journal of chemical physics |
container_volume | 142 |
creator | Lorenz, B Oh, Y R Nam, S K Jeon, S H Persson, B N J |
description | We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, there is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach. |
doi_str_mv | 10.1063/1.4919221 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22415805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1683076592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-bdee28e88e3a83c4f5213acc61024f72c1b5cf7eafc85aa0118f86f947be22213</originalsourceid><addsrcrecordid>eNo9kE1LxDAURYMoOo4u_AMScKOLjnlJm6buZBg_YFAQXYc0fXEqnaYmLTr_3sqMwoP7FocL9xByBmwGTIprmKUFFJzDHpkAU0WSy4LtkwljHJJCMnlEjmP8YIxBztNDcsTl-KYyn5Cnl6EsMVAXatvXvqXjBW8qGofgjMV4QxffHYZ6jW1PTVvRfoU-bKjzgTb-i8amrur2ncYOsYon5MCZJuLpLqfk7W7xOn9Ils_3j_PbZWIFiD4pK0SuUCkURgmbuoyDMNZKYDx1ObdQZtblaJxVmTEMQDklXZHmJfJxp5iSi22vj32to617tCvr2xZtrzlPIVMsG6nLLdUF_zlg7PW6jhabxrToh6hBKsFymRV8RK-2qA0-xoBOd-NmEzYamP6VrEHvJI_s-a52KNdY_ZN_VsUPH0Z1rw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683076592</pqid></control><display><type>article</type><title>Rubber friction on road surfaces: Experiment and theory for low sliding speeds</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Lorenz, B ; Oh, Y R ; Nam, S K ; Jeon, S H ; Persson, B N J</creator><creatorcontrib>Lorenz, B ; Oh, Y R ; Nam, S K ; Jeon, S H ; Persson, B N J</creatorcontrib><description>We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, there is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4919221</identifier><identifier>PMID: 26001467</identifier><language>eng</language><publisher>United States</publisher><subject>ASPHALTS ; ATOMIC FORCE MICROSCOPY ; BONDING ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPARATIVE EVALUATIONS ; DEFORMATION ; ELASTICITY ; FRICTION ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; MECHANICS ; MOLECULES ; ROUGHNESS ; RUBBERS ; SHEAR ; STRAINS ; SURFACES ; TIRES ; TOPOGRAPHY ; VELOCITY</subject><ispartof>The Journal of chemical physics, 2015-05, Vol.142 (19), p.194701-194701</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-bdee28e88e3a83c4f5213acc61024f72c1b5cf7eafc85aa0118f86f947be22213</citedby><cites>FETCH-LOGICAL-c313t-bdee28e88e3a83c4f5213acc61024f72c1b5cf7eafc85aa0118f86f947be22213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26001467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22415805$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lorenz, B</creatorcontrib><creatorcontrib>Oh, Y R</creatorcontrib><creatorcontrib>Nam, S K</creatorcontrib><creatorcontrib>Jeon, S H</creatorcontrib><creatorcontrib>Persson, B N J</creatorcontrib><title>Rubber friction on road surfaces: Experiment and theory for low sliding speeds</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, there is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach.</description><subject>ASPHALTS</subject><subject>ATOMIC FORCE MICROSCOPY</subject><subject>BONDING</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>DEFORMATION</subject><subject>ELASTICITY</subject><subject>FRICTION</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>MECHANICS</subject><subject>MOLECULES</subject><subject>ROUGHNESS</subject><subject>RUBBERS</subject><subject>SHEAR</subject><subject>STRAINS</subject><subject>SURFACES</subject><subject>TIRES</subject><subject>TOPOGRAPHY</subject><subject>VELOCITY</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAURYMoOo4u_AMScKOLjnlJm6buZBg_YFAQXYc0fXEqnaYmLTr_3sqMwoP7FocL9xByBmwGTIprmKUFFJzDHpkAU0WSy4LtkwljHJJCMnlEjmP8YIxBztNDcsTl-KYyn5Cnl6EsMVAXatvXvqXjBW8qGofgjMV4QxffHYZ6jW1PTVvRfoU-bKjzgTb-i8amrur2ncYOsYon5MCZJuLpLqfk7W7xOn9Ils_3j_PbZWIFiD4pK0SuUCkURgmbuoyDMNZKYDx1ObdQZtblaJxVmTEMQDklXZHmJfJxp5iSi22vj32to617tCvr2xZtrzlPIVMsG6nLLdUF_zlg7PW6jhabxrToh6hBKsFymRV8RK-2qA0-xoBOd-NmEzYamP6VrEHvJI_s-a52KNdY_ZN_VsUPH0Z1rw</recordid><startdate>20150521</startdate><enddate>20150521</enddate><creator>Lorenz, B</creator><creator>Oh, Y R</creator><creator>Nam, S K</creator><creator>Jeon, S H</creator><creator>Persson, B N J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20150521</creationdate><title>Rubber friction on road surfaces: Experiment and theory for low sliding speeds</title><author>Lorenz, B ; Oh, Y R ; Nam, S K ; Jeon, S H ; Persson, B N J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-bdee28e88e3a83c4f5213acc61024f72c1b5cf7eafc85aa0118f86f947be22213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ASPHALTS</topic><topic>ATOMIC FORCE MICROSCOPY</topic><topic>BONDING</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>DEFORMATION</topic><topic>ELASTICITY</topic><topic>FRICTION</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>MECHANICS</topic><topic>MOLECULES</topic><topic>ROUGHNESS</topic><topic>RUBBERS</topic><topic>SHEAR</topic><topic>STRAINS</topic><topic>SURFACES</topic><topic>TIRES</topic><topic>TOPOGRAPHY</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lorenz, B</creatorcontrib><creatorcontrib>Oh, Y R</creatorcontrib><creatorcontrib>Nam, S K</creatorcontrib><creatorcontrib>Jeon, S H</creatorcontrib><creatorcontrib>Persson, B N J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lorenz, B</au><au>Oh, Y R</au><au>Nam, S K</au><au>Jeon, S H</au><au>Persson, B N J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rubber friction on road surfaces: Experiment and theory for low sliding speeds</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-05-21</date><risdate>2015</risdate><volume>142</volume><issue>19</issue><spage>194701</spage><epage>194701</epage><pages>194701-194701</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, there is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach.</abstract><cop>United States</cop><pmid>26001467</pmid><doi>10.1063/1.4919221</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2015-05, Vol.142 (19), p.194701-194701 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_22415805 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | ASPHALTS ATOMIC FORCE MICROSCOPY BONDING CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COMPARATIVE EVALUATIONS DEFORMATION ELASTICITY FRICTION INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY MECHANICS MOLECULES ROUGHNESS RUBBERS SHEAR STRAINS SURFACES TIRES TOPOGRAPHY VELOCITY |
title | Rubber friction on road surfaces: Experiment and theory for low sliding speeds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T03%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rubber%20friction%20on%20road%20surfaces:%20Experiment%20and%20theory%20for%20low%20sliding%20speeds&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Lorenz,%20B&rft.date=2015-05-21&rft.volume=142&rft.issue=19&rft.spage=194701&rft.epage=194701&rft.pages=194701-194701&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4919221&rft_dat=%3Cproquest_osti_%3E1683076592%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-bdee28e88e3a83c4f5213acc61024f72c1b5cf7eafc85aa0118f86f947be22213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1683076592&rft_id=info:pmid/26001467&rfr_iscdi=true |