Loading…

Local vibrational dynamics of hematite (α-Fe₂O₃) studied by extended x-ray absorption fine structure and molecular dynamics

The local vibrational dynamics of hematite (α-Fe2O3) has been investigated by temperature-dependent extended x-ray absorption fine structure spectroscopy and molecular dynamics simulations. The local dynamics of both the short and long nearest-neighbor Fe-O distances has been singled out, i.e., thei...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2014-06, Vol.140 (22), p.224504-224504
Main Authors: Sanson, A, Mathon, O, Pascarelli, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The local vibrational dynamics of hematite (α-Fe2O3) has been investigated by temperature-dependent extended x-ray absorption fine structure spectroscopy and molecular dynamics simulations. The local dynamics of both the short and long nearest-neighbor Fe-O distances has been singled out, i.e., their local thermal expansion and the parallel and perpendicular mean-square relative atomic displacements have been determined, obtaining a partial agreement with molecular dynamics. No evidence of the Morin transition has been observed. More importantly, the strong anisotropy of relative thermal vibrations found for the short Fe-O distance has been related to its negative thermal expansion. The differences between the local dynamics of short and long Fe-O distances are discussed in terms of projection and correlation of atomic motion. As a result, we can conclude that the short Fe-O bond is stiffer to stretching and softer to bending than the long Fe-O bond.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4882282