Loading…

Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 2015-02, Vol.457 (3), p.378-384
Main Authors: Shi, Zi-xuan, Rao, Wei, Wang, Huan, Wang, Nan-ding, Si, Jing-Wen, Zhao, Jiao, Li, Jun-chang, Wang, Zong-ren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-516336ad4eaa38463d4ff6fc529147bc85756ad867ec0060dbc67d6d718f87c03
cites cdi_FETCH-LOGICAL-c487t-516336ad4eaa38463d4ff6fc529147bc85756ad867ec0060dbc67d6d718f87c03
container_end_page 384
container_issue 3
container_start_page 378
container_title Biochemical and biophysical research communications
container_volume 457
creator Shi, Zi-xuan
Rao, Wei
Wang, Huan
Wang, Nan-ding
Si, Jing-Wen
Zhao, Jiao
Li, Jun-chang
Wang, Zong-ren
description Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. •Modeled microgravity (MMG) suppressed migration and invasion in U87 cells.•MMG downregulated the SOCE and the expression of Orai1.•SOCE inhibition mimicked the effects of MMG on migration and invasion potentials.•Restoration of SOCE diminished the effects of MMG on migration and invasion.
doi_str_mv 10.1016/j.bbrc.2014.12.120
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22458477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X15000054</els_id><sourcerecordid>1655726558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-516336ad4eaa38463d4ff6fc529147bc85756ad867ec0060dbc67d6d718f87c03</originalsourceid><addsrcrecordid>eNqFkc-OFCEQxonRuOPqC3gwJF689Ag0DUzixWzWP8kaL27ijdBQ3cOkG0agx8wr-NTSmdWjJhUI1K--1FeF0EtKtpRQ8faw7ftkt4xQvqWsBnmENpTsSMMo4Y_RhhAiGraj36_Qs5wPhFDKxe4pumJdp2pyt0G_vkQHEzg8e5vimMzJlzPOy_GYIOf678PJZB8DNmGFKlHWVxzwfplNwOPkYz-ZXOJs8L2S2MI0ZVz2KS7jHrv4MyQYl6mWhRFXLEETj1Blqrg1k_XLjCGUdH6OngxmyvDi4b5G9x9uv918au6-fvx88_6usVzJ0nRUtK0wjoMxreKidXwYxGC7apTL3qpOdjWthARb_RPXWyGdcJKqQUlL2mv0-qIbc_E6W1_A7m0MAWzRjPFOcSkr9eZCHVP8sUAuevZ59WYCxCVrKqRoOyVqM_9Hu06yeqiKsgtah51zgkEfk59NOmtK9LpUfdDrUvW6VE1ZjbXhVw_6Sz-D-1vyZ4sVeHcBoI7t5CGtriBYcD6tplz0_9L_DZawtSI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1655726558</pqid></control><display><type>article</type><title>Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Shi, Zi-xuan ; Rao, Wei ; Wang, Huan ; Wang, Nan-ding ; Si, Jing-Wen ; Zhao, Jiao ; Li, Jun-chang ; Wang, Zong-ren</creator><creatorcontrib>Shi, Zi-xuan ; Rao, Wei ; Wang, Huan ; Wang, Nan-ding ; Si, Jing-Wen ; Zhao, Jiao ; Li, Jun-chang ; Wang, Zong-ren</creatorcontrib><description>Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. •Modeled microgravity (MMG) suppressed migration and invasion in U87 cells.•MMG downregulated the SOCE and the expression of Orai1.•SOCE inhibition mimicked the effects of MMG on migration and invasion potentials.•Restoration of SOCE diminished the effects of MMG on migration and invasion.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2014.12.120</identifier><identifier>PMID: 25580009</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; BIOLOGICAL RECOVERY ; BRAIN ; Brain Neoplasms - metabolism ; Brain Neoplasms - pathology ; Brain Neoplasms - therapy ; CALCIUM ; Calcium - metabolism ; Calcium Channels - genetics ; Cell Line, Tumor ; Cell Movement ; CELL PROLIFERATION ; Down-Regulation ; Glioblastoma ; Glioblastoma - metabolism ; Glioblastoma - pathology ; Glioblastoma - therapy ; GLIOMAS ; Humans ; INHIBITION ; Invasion ; Membrane Proteins - antagonists &amp; inhibitors ; Membrane Proteins - genetics ; METASTASES ; Microgravity ; MIGRATION ; Neoplasm Invasiveness ; Neoplasm Proteins - antagonists &amp; inhibitors ; Neoplasm Proteins - genetics ; ORAI1 Protein ; RNA Interference ; SOCE ; STIMULATION ; Stromal Interaction Molecule 1 ; Up-Regulation ; Weightlessness Simulation</subject><ispartof>Biochemical and biophysical research communications, 2015-02, Vol.457 (3), p.378-384</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-516336ad4eaa38463d4ff6fc529147bc85756ad867ec0060dbc67d6d718f87c03</citedby><cites>FETCH-LOGICAL-c487t-516336ad4eaa38463d4ff6fc529147bc85756ad867ec0060dbc67d6d718f87c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25580009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22458477$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Zi-xuan</creatorcontrib><creatorcontrib>Rao, Wei</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Wang, Nan-ding</creatorcontrib><creatorcontrib>Si, Jing-Wen</creatorcontrib><creatorcontrib>Zhao, Jiao</creatorcontrib><creatorcontrib>Li, Jun-chang</creatorcontrib><creatorcontrib>Wang, Zong-ren</creatorcontrib><title>Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. •Modeled microgravity (MMG) suppressed migration and invasion in U87 cells.•MMG downregulated the SOCE and the expression of Orai1.•SOCE inhibition mimicked the effects of MMG on migration and invasion potentials.•Restoration of SOCE diminished the effects of MMG on migration and invasion.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>BIOLOGICAL RECOVERY</subject><subject>BRAIN</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain Neoplasms - therapy</subject><subject>CALCIUM</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels - genetics</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement</subject><subject>CELL PROLIFERATION</subject><subject>Down-Regulation</subject><subject>Glioblastoma</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>Glioblastoma - therapy</subject><subject>GLIOMAS</subject><subject>Humans</subject><subject>INHIBITION</subject><subject>Invasion</subject><subject>Membrane Proteins - antagonists &amp; inhibitors</subject><subject>Membrane Proteins - genetics</subject><subject>METASTASES</subject><subject>Microgravity</subject><subject>MIGRATION</subject><subject>Neoplasm Invasiveness</subject><subject>Neoplasm Proteins - antagonists &amp; inhibitors</subject><subject>Neoplasm Proteins - genetics</subject><subject>ORAI1 Protein</subject><subject>RNA Interference</subject><subject>SOCE</subject><subject>STIMULATION</subject><subject>Stromal Interaction Molecule 1</subject><subject>Up-Regulation</subject><subject>Weightlessness Simulation</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc-OFCEQxonRuOPqC3gwJF689Ag0DUzixWzWP8kaL27ijdBQ3cOkG0agx8wr-NTSmdWjJhUI1K--1FeF0EtKtpRQ8faw7ftkt4xQvqWsBnmENpTsSMMo4Y_RhhAiGraj36_Qs5wPhFDKxe4pumJdp2pyt0G_vkQHEzg8e5vimMzJlzPOy_GYIOf678PJZB8DNmGFKlHWVxzwfplNwOPkYz-ZXOJs8L2S2MI0ZVz2KS7jHrv4MyQYl6mWhRFXLEETj1Blqrg1k_XLjCGUdH6OngxmyvDi4b5G9x9uv918au6-fvx88_6usVzJ0nRUtK0wjoMxreKidXwYxGC7apTL3qpOdjWthARb_RPXWyGdcJKqQUlL2mv0-qIbc_E6W1_A7m0MAWzRjPFOcSkr9eZCHVP8sUAuevZ59WYCxCVrKqRoOyVqM_9Hu06yeqiKsgtah51zgkEfk59NOmtK9LpUfdDrUvW6VE1ZjbXhVw_6Sz-D-1vyZ4sVeHcBoI7t5CGtriBYcD6tplz0_9L_DZawtSI</recordid><startdate>20150213</startdate><enddate>20150213</enddate><creator>Shi, Zi-xuan</creator><creator>Rao, Wei</creator><creator>Wang, Huan</creator><creator>Wang, Nan-ding</creator><creator>Si, Jing-Wen</creator><creator>Zhao, Jiao</creator><creator>Li, Jun-chang</creator><creator>Wang, Zong-ren</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QP</scope><scope>7TK</scope><scope>OTOTI</scope></search><sort><creationdate>20150213</creationdate><title>Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry</title><author>Shi, Zi-xuan ; Rao, Wei ; Wang, Huan ; Wang, Nan-ding ; Si, Jing-Wen ; Zhao, Jiao ; Li, Jun-chang ; Wang, Zong-ren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-516336ad4eaa38463d4ff6fc529147bc85756ad867ec0060dbc67d6d718f87c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>BIOLOGICAL RECOVERY</topic><topic>BRAIN</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain Neoplasms - therapy</topic><topic>CALCIUM</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels - genetics</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement</topic><topic>CELL PROLIFERATION</topic><topic>Down-Regulation</topic><topic>Glioblastoma</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>Glioblastoma - therapy</topic><topic>GLIOMAS</topic><topic>Humans</topic><topic>INHIBITION</topic><topic>Invasion</topic><topic>Membrane Proteins - antagonists &amp; inhibitors</topic><topic>Membrane Proteins - genetics</topic><topic>METASTASES</topic><topic>Microgravity</topic><topic>MIGRATION</topic><topic>Neoplasm Invasiveness</topic><topic>Neoplasm Proteins - antagonists &amp; inhibitors</topic><topic>Neoplasm Proteins - genetics</topic><topic>ORAI1 Protein</topic><topic>RNA Interference</topic><topic>SOCE</topic><topic>STIMULATION</topic><topic>Stromal Interaction Molecule 1</topic><topic>Up-Regulation</topic><topic>Weightlessness Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Zi-xuan</creatorcontrib><creatorcontrib>Rao, Wei</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Wang, Nan-ding</creatorcontrib><creatorcontrib>Si, Jing-Wen</creatorcontrib><creatorcontrib>Zhao, Jiao</creatorcontrib><creatorcontrib>Li, Jun-chang</creatorcontrib><creatorcontrib>Wang, Zong-ren</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Zi-xuan</au><au>Rao, Wei</au><au>Wang, Huan</au><au>Wang, Nan-ding</au><au>Si, Jing-Wen</au><au>Zhao, Jiao</au><au>Li, Jun-chang</au><au>Wang, Zong-ren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2015-02-13</date><risdate>2015</risdate><volume>457</volume><issue>3</issue><spage>378</spage><epage>384</epage><pages>378-384</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. •Modeled microgravity (MMG) suppressed migration and invasion in U87 cells.•MMG downregulated the SOCE and the expression of Orai1.•SOCE inhibition mimicked the effects of MMG on migration and invasion potentials.•Restoration of SOCE diminished the effects of MMG on migration and invasion.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25580009</pmid><doi>10.1016/j.bbrc.2014.12.120</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2015-02, Vol.457 (3), p.378-384
issn 0006-291X
1090-2104
language eng
recordid cdi_osti_scitechconnect_22458477
source ScienceDirect Freedom Collection 2022-2024
subjects 60 APPLIED LIFE SCIENCES
BIOLOGICAL RECOVERY
BRAIN
Brain Neoplasms - metabolism
Brain Neoplasms - pathology
Brain Neoplasms - therapy
CALCIUM
Calcium - metabolism
Calcium Channels - genetics
Cell Line, Tumor
Cell Movement
CELL PROLIFERATION
Down-Regulation
Glioblastoma
Glioblastoma - metabolism
Glioblastoma - pathology
Glioblastoma - therapy
GLIOMAS
Humans
INHIBITION
Invasion
Membrane Proteins - antagonists & inhibitors
Membrane Proteins - genetics
METASTASES
Microgravity
MIGRATION
Neoplasm Invasiveness
Neoplasm Proteins - antagonists & inhibitors
Neoplasm Proteins - genetics
ORAI1 Protein
RNA Interference
SOCE
STIMULATION
Stromal Interaction Molecule 1
Up-Regulation
Weightlessness Simulation
title Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A57%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeled%20microgravity%20suppressed%20invasion%20and%20migration%20of%20human%20glioblastoma%20U87%20cells%20through%20downregulating%20store-operated%20calcium%20entry&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Shi,%20Zi-xuan&rft.date=2015-02-13&rft.volume=457&rft.issue=3&rft.spage=378&rft.epage=384&rft.pages=378-384&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2014.12.120&rft_dat=%3Cproquest_osti_%3E1655726558%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-516336ad4eaa38463d4ff6fc529147bc85756ad867ec0060dbc67d6d718f87c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1655726558&rft_id=info:pmid/25580009&rfr_iscdi=true