Loading…
Computation of entropy and Lyapunov exponent by a shift transform
We present a novel computational method to estimate the topological entropy and Lyapunov exponent of nonlinear maps using a shift transform. Unlike the computation of periodic orbits or the symbolic dynamical approach by the Markov partition, the method presented here does not require any special te...
Saved in:
Published in: | Chaos (Woodbury, N.Y.) N.Y.), 2015-10, Vol.25 (10), p.103110-103110 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c407t-e1ff85bd195b5c773ab81bb97625c5507e7c55a542407c9c6d019c19bdb548c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c407t-e1ff85bd195b5c773ab81bb97625c5507e7c55a542407c9c6d019c19bdb548c3 |
container_end_page | 103110 |
container_issue | 10 |
container_start_page | 103110 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 25 |
creator | Matsuoka, Chihiro Hiraide, Koichi |
description | We present a novel computational method to estimate the topological entropy and Lyapunov exponent of nonlinear maps using a shift transform. Unlike the computation of periodic orbits or the symbolic dynamical approach by the Markov partition, the method presented here does not require any special techniques in computational and mathematical fields to calculate these quantities. In spite of its simplicity, our method can accurately capture not only the chaotic region but also the non-chaotic region (window region) such that it is important physically but the (Lebesgue) measure zero and usually hard to calculate or observe. Furthermore, it is shown that the Kolmogorov-Sinai entropy of the Sinai-Ruelle-Bowen measure (the physical measure) coincides with the topological entropy. |
doi_str_mv | 10.1063/1.4930956 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22482286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1729353414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-e1ff85bd195b5c773ab81bb97625c5507e7c55a542407c9c6d019c19bdb548c3</originalsourceid><addsrcrecordid>eNpF0MtKAzEUBuAgitXqwheQATe6mJrLJJksS_EGBTfdhySToVM6yZhkxL69Ka11dQ6cj5_kB-AOwRmCjDyjWSUIFJSdgSsEa1FyVuPz_U6rElEIJ-A6xg2EEGFCL8EEM4oh5OwKzBe-H8akUudd4dvCuhT8sCuUa4rlTg2j89-F_Rm8y5dC50MR112bihSUi60P_Q24aNU22tvjnILV68tq8V4uP98-FvNlaSrIU2lR29ZUN0hQTQ3nROkaaS04w9RQCrnleSha4cyNMKyBSBgkdKNpVRsyBQ-HWB9TJ6PpkjVr452zJkmMqxrjmmX1eFBD8F-jjUn2XTR2u1XO-jFKxLEglFSo-g880Y0fg8tfkBjlR4iaYp7V00GZ4GMMtpVD6HoVdhJBuS9fInksP9v7Y-Koe9uc5F_b5BeF5Xwe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124098527</pqid></control><display><type>article</type><title>Computation of entropy and Lyapunov exponent by a shift transform</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Matsuoka, Chihiro ; Hiraide, Koichi</creator><creatorcontrib>Matsuoka, Chihiro ; Hiraide, Koichi</creatorcontrib><description>We present a novel computational method to estimate the topological entropy and Lyapunov exponent of nonlinear maps using a shift transform. Unlike the computation of periodic orbits or the symbolic dynamical approach by the Markov partition, the method presented here does not require any special techniques in computational and mathematical fields to calculate these quantities. In spite of its simplicity, our method can accurately capture not only the chaotic region but also the non-chaotic region (window region) such that it is important physically but the (Lebesgue) measure zero and usually hard to calculate or observe. Furthermore, it is shown that the Kolmogorov-Sinai entropy of the Sinai-Ruelle-Bowen measure (the physical measure) coincides with the topological entropy.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4930956</identifier><identifier>PMID: 26520076</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>CHAOS THEORY ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computation ; ENTROPY ; Liapunov exponents ; LYAPUNOV METHOD ; MARKOV PROCESS ; Markov processes ; Mathematical analysis ; NONLINEAR PROBLEMS ; ORBITS ; PERIODICITY ; TOPOLOGY</subject><ispartof>Chaos (Woodbury, N.Y.), 2015-10, Vol.25 (10), p.103110-103110</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-e1ff85bd195b5c773ab81bb97625c5507e7c55a542407c9c6d019c19bdb548c3</citedby><cites>FETCH-LOGICAL-c407t-e1ff85bd195b5c773ab81bb97625c5507e7c55a542407c9c6d019c19bdb548c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26520076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22482286$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsuoka, Chihiro</creatorcontrib><creatorcontrib>Hiraide, Koichi</creatorcontrib><title>Computation of entropy and Lyapunov exponent by a shift transform</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We present a novel computational method to estimate the topological entropy and Lyapunov exponent of nonlinear maps using a shift transform. Unlike the computation of periodic orbits or the symbolic dynamical approach by the Markov partition, the method presented here does not require any special techniques in computational and mathematical fields to calculate these quantities. In spite of its simplicity, our method can accurately capture not only the chaotic region but also the non-chaotic region (window region) such that it is important physically but the (Lebesgue) measure zero and usually hard to calculate or observe. Furthermore, it is shown that the Kolmogorov-Sinai entropy of the Sinai-Ruelle-Bowen measure (the physical measure) coincides with the topological entropy.</description><subject>CHAOS THEORY</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computation</subject><subject>ENTROPY</subject><subject>Liapunov exponents</subject><subject>LYAPUNOV METHOD</subject><subject>MARKOV PROCESS</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>NONLINEAR PROBLEMS</subject><subject>ORBITS</subject><subject>PERIODICITY</subject><subject>TOPOLOGY</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpF0MtKAzEUBuAgitXqwheQATe6mJrLJJksS_EGBTfdhySToVM6yZhkxL69Ka11dQ6cj5_kB-AOwRmCjDyjWSUIFJSdgSsEa1FyVuPz_U6rElEIJ-A6xg2EEGFCL8EEM4oh5OwKzBe-H8akUudd4dvCuhT8sCuUa4rlTg2j89-F_Rm8y5dC50MR112bihSUi60P_Q24aNU22tvjnILV68tq8V4uP98-FvNlaSrIU2lR29ZUN0hQTQ3nROkaaS04w9RQCrnleSha4cyNMKyBSBgkdKNpVRsyBQ-HWB9TJ6PpkjVr452zJkmMqxrjmmX1eFBD8F-jjUn2XTR2u1XO-jFKxLEglFSo-g880Y0fg8tfkBjlR4iaYp7V00GZ4GMMtpVD6HoVdhJBuS9fInksP9v7Y-Koe9uc5F_b5BeF5Xwe</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Matsuoka, Chihiro</creator><creator>Hiraide, Koichi</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20151001</creationdate><title>Computation of entropy and Lyapunov exponent by a shift transform</title><author>Matsuoka, Chihiro ; Hiraide, Koichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-e1ff85bd195b5c773ab81bb97625c5507e7c55a542407c9c6d019c19bdb548c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CHAOS THEORY</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computation</topic><topic>ENTROPY</topic><topic>Liapunov exponents</topic><topic>LYAPUNOV METHOD</topic><topic>MARKOV PROCESS</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>NONLINEAR PROBLEMS</topic><topic>ORBITS</topic><topic>PERIODICITY</topic><topic>TOPOLOGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsuoka, Chihiro</creatorcontrib><creatorcontrib>Hiraide, Koichi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsuoka, Chihiro</au><au>Hiraide, Koichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of entropy and Lyapunov exponent by a shift transform</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>25</volume><issue>10</issue><spage>103110</spage><epage>103110</epage><pages>103110-103110</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><abstract>We present a novel computational method to estimate the topological entropy and Lyapunov exponent of nonlinear maps using a shift transform. Unlike the computation of periodic orbits or the symbolic dynamical approach by the Markov partition, the method presented here does not require any special techniques in computational and mathematical fields to calculate these quantities. In spite of its simplicity, our method can accurately capture not only the chaotic region but also the non-chaotic region (window region) such that it is important physically but the (Lebesgue) measure zero and usually hard to calculate or observe. Furthermore, it is shown that the Kolmogorov-Sinai entropy of the Sinai-Ruelle-Bowen measure (the physical measure) coincides with the topological entropy.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26520076</pmid><doi>10.1063/1.4930956</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2015-10, Vol.25 (10), p.103110-103110 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_osti_scitechconnect_22482286 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | CHAOS THEORY CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computation ENTROPY Liapunov exponents LYAPUNOV METHOD MARKOV PROCESS Markov processes Mathematical analysis NONLINEAR PROBLEMS ORBITS PERIODICITY TOPOLOGY |
title | Computation of entropy and Lyapunov exponent by a shift transform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20entropy%20and%20Lyapunov%20exponent%20by%20a%20shift%20transform&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Matsuoka,%20Chihiro&rft.date=2015-10-01&rft.volume=25&rft.issue=10&rft.spage=103110&rft.epage=103110&rft.pages=103110-103110&rft.issn=1054-1500&rft.eissn=1089-7682&rft_id=info:doi/10.1063/1.4930956&rft_dat=%3Cproquest_osti_%3E1729353414%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-e1ff85bd195b5c773ab81bb97625c5507e7c55a542407c9c6d019c19bdb548c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124098527&rft_id=info:pmid/26520076&rfr_iscdi=true |