Loading…

Computation of entropy and Lyapunov exponent by a shift transform

We present a novel computational method to estimate the topological entropy and Lyapunov exponent of nonlinear maps using a shift transform. Unlike the computation of periodic orbits or the symbolic dynamical approach by the Markov partition, the method presented here does not require any special te...

Full description

Saved in:
Bibliographic Details
Published in:Chaos (Woodbury, N.Y.) N.Y.), 2015-10, Vol.25 (10), p.103110-103110
Main Authors: Matsuoka, Chihiro, Hiraide, Koichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-e1ff85bd195b5c773ab81bb97625c5507e7c55a542407c9c6d019c19bdb548c3
cites cdi_FETCH-LOGICAL-c407t-e1ff85bd195b5c773ab81bb97625c5507e7c55a542407c9c6d019c19bdb548c3
container_end_page 103110
container_issue 10
container_start_page 103110
container_title Chaos (Woodbury, N.Y.)
container_volume 25
creator Matsuoka, Chihiro
Hiraide, Koichi
description We present a novel computational method to estimate the topological entropy and Lyapunov exponent of nonlinear maps using a shift transform. Unlike the computation of periodic orbits or the symbolic dynamical approach by the Markov partition, the method presented here does not require any special techniques in computational and mathematical fields to calculate these quantities. In spite of its simplicity, our method can accurately capture not only the chaotic region but also the non-chaotic region (window region) such that it is important physically but the (Lebesgue) measure zero and usually hard to calculate or observe. Furthermore, it is shown that the Kolmogorov-Sinai entropy of the Sinai-Ruelle-Bowen measure (the physical measure) coincides with the topological entropy.
doi_str_mv 10.1063/1.4930956
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22482286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1729353414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-e1ff85bd195b5c773ab81bb97625c5507e7c55a542407c9c6d019c19bdb548c3</originalsourceid><addsrcrecordid>eNpF0MtKAzEUBuAgitXqwheQATe6mJrLJJksS_EGBTfdhySToVM6yZhkxL69Ka11dQ6cj5_kB-AOwRmCjDyjWSUIFJSdgSsEa1FyVuPz_U6rElEIJ-A6xg2EEGFCL8EEM4oh5OwKzBe-H8akUudd4dvCuhT8sCuUa4rlTg2j89-F_Rm8y5dC50MR112bihSUi60P_Q24aNU22tvjnILV68tq8V4uP98-FvNlaSrIU2lR29ZUN0hQTQ3nROkaaS04w9RQCrnleSha4cyNMKyBSBgkdKNpVRsyBQ-HWB9TJ6PpkjVr452zJkmMqxrjmmX1eFBD8F-jjUn2XTR2u1XO-jFKxLEglFSo-g880Y0fg8tfkBjlR4iaYp7V00GZ4GMMtpVD6HoVdhJBuS9fInksP9v7Y-Koe9uc5F_b5BeF5Xwe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124098527</pqid></control><display><type>article</type><title>Computation of entropy and Lyapunov exponent by a shift transform</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Matsuoka, Chihiro ; Hiraide, Koichi</creator><creatorcontrib>Matsuoka, Chihiro ; Hiraide, Koichi</creatorcontrib><description>We present a novel computational method to estimate the topological entropy and Lyapunov exponent of nonlinear maps using a shift transform. Unlike the computation of periodic orbits or the symbolic dynamical approach by the Markov partition, the method presented here does not require any special techniques in computational and mathematical fields to calculate these quantities. In spite of its simplicity, our method can accurately capture not only the chaotic region but also the non-chaotic region (window region) such that it is important physically but the (Lebesgue) measure zero and usually hard to calculate or observe. Furthermore, it is shown that the Kolmogorov-Sinai entropy of the Sinai-Ruelle-Bowen measure (the physical measure) coincides with the topological entropy.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4930956</identifier><identifier>PMID: 26520076</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>CHAOS THEORY ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computation ; ENTROPY ; Liapunov exponents ; LYAPUNOV METHOD ; MARKOV PROCESS ; Markov processes ; Mathematical analysis ; NONLINEAR PROBLEMS ; ORBITS ; PERIODICITY ; TOPOLOGY</subject><ispartof>Chaos (Woodbury, N.Y.), 2015-10, Vol.25 (10), p.103110-103110</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-e1ff85bd195b5c773ab81bb97625c5507e7c55a542407c9c6d019c19bdb548c3</citedby><cites>FETCH-LOGICAL-c407t-e1ff85bd195b5c773ab81bb97625c5507e7c55a542407c9c6d019c19bdb548c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26520076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22482286$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsuoka, Chihiro</creatorcontrib><creatorcontrib>Hiraide, Koichi</creatorcontrib><title>Computation of entropy and Lyapunov exponent by a shift transform</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We present a novel computational method to estimate the topological entropy and Lyapunov exponent of nonlinear maps using a shift transform. Unlike the computation of periodic orbits or the symbolic dynamical approach by the Markov partition, the method presented here does not require any special techniques in computational and mathematical fields to calculate these quantities. In spite of its simplicity, our method can accurately capture not only the chaotic region but also the non-chaotic region (window region) such that it is important physically but the (Lebesgue) measure zero and usually hard to calculate or observe. Furthermore, it is shown that the Kolmogorov-Sinai entropy of the Sinai-Ruelle-Bowen measure (the physical measure) coincides with the topological entropy.</description><subject>CHAOS THEORY</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computation</subject><subject>ENTROPY</subject><subject>Liapunov exponents</subject><subject>LYAPUNOV METHOD</subject><subject>MARKOV PROCESS</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>NONLINEAR PROBLEMS</subject><subject>ORBITS</subject><subject>PERIODICITY</subject><subject>TOPOLOGY</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpF0MtKAzEUBuAgitXqwheQATe6mJrLJJksS_EGBTfdhySToVM6yZhkxL69Ka11dQ6cj5_kB-AOwRmCjDyjWSUIFJSdgSsEa1FyVuPz_U6rElEIJ-A6xg2EEGFCL8EEM4oh5OwKzBe-H8akUudd4dvCuhT8sCuUa4rlTg2j89-F_Rm8y5dC50MR112bihSUi60P_Q24aNU22tvjnILV68tq8V4uP98-FvNlaSrIU2lR29ZUN0hQTQ3nROkaaS04w9RQCrnleSha4cyNMKyBSBgkdKNpVRsyBQ-HWB9TJ6PpkjVr452zJkmMqxrjmmX1eFBD8F-jjUn2XTR2u1XO-jFKxLEglFSo-g880Y0fg8tfkBjlR4iaYp7V00GZ4GMMtpVD6HoVdhJBuS9fInksP9v7Y-Koe9uc5F_b5BeF5Xwe</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Matsuoka, Chihiro</creator><creator>Hiraide, Koichi</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20151001</creationdate><title>Computation of entropy and Lyapunov exponent by a shift transform</title><author>Matsuoka, Chihiro ; Hiraide, Koichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-e1ff85bd195b5c773ab81bb97625c5507e7c55a542407c9c6d019c19bdb548c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CHAOS THEORY</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computation</topic><topic>ENTROPY</topic><topic>Liapunov exponents</topic><topic>LYAPUNOV METHOD</topic><topic>MARKOV PROCESS</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>NONLINEAR PROBLEMS</topic><topic>ORBITS</topic><topic>PERIODICITY</topic><topic>TOPOLOGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsuoka, Chihiro</creatorcontrib><creatorcontrib>Hiraide, Koichi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsuoka, Chihiro</au><au>Hiraide, Koichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of entropy and Lyapunov exponent by a shift transform</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>25</volume><issue>10</issue><spage>103110</spage><epage>103110</epage><pages>103110-103110</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><abstract>We present a novel computational method to estimate the topological entropy and Lyapunov exponent of nonlinear maps using a shift transform. Unlike the computation of periodic orbits or the symbolic dynamical approach by the Markov partition, the method presented here does not require any special techniques in computational and mathematical fields to calculate these quantities. In spite of its simplicity, our method can accurately capture not only the chaotic region but also the non-chaotic region (window region) such that it is important physically but the (Lebesgue) measure zero and usually hard to calculate or observe. Furthermore, it is shown that the Kolmogorov-Sinai entropy of the Sinai-Ruelle-Bowen measure (the physical measure) coincides with the topological entropy.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26520076</pmid><doi>10.1063/1.4930956</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2015-10, Vol.25 (10), p.103110-103110
issn 1054-1500
1089-7682
language eng
recordid cdi_osti_scitechconnect_22482286
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects CHAOS THEORY
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computation
ENTROPY
Liapunov exponents
LYAPUNOV METHOD
MARKOV PROCESS
Markov processes
Mathematical analysis
NONLINEAR PROBLEMS
ORBITS
PERIODICITY
TOPOLOGY
title Computation of entropy and Lyapunov exponent by a shift transform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20entropy%20and%20Lyapunov%20exponent%20by%20a%20shift%20transform&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Matsuoka,%20Chihiro&rft.date=2015-10-01&rft.volume=25&rft.issue=10&rft.spage=103110&rft.epage=103110&rft.pages=103110-103110&rft.issn=1054-1500&rft.eissn=1089-7682&rft_id=info:doi/10.1063/1.4930956&rft_dat=%3Cproquest_osti_%3E1729353414%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-e1ff85bd195b5c773ab81bb97625c5507e7c55a542407c9c6d019c19bdb548c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124098527&rft_id=info:pmid/26520076&rfr_iscdi=true