Loading…
Evidence of large magneto-dielectric effect coupled to a metamagnetic transition in Yb{sub 2}CoMnO{sub 6}
The double perovskite Yb{sub 2}CoMnO{sub 6} has been synthesized with an almost perfect checkerboard arrangement of Co{sup 2+} and Mn{sup 4+} cations in the B-sublattice of the perovskite cell. It presents an anomaly in the electric capacitance and a strong magneto-dielectric effect at about 40 K wh...
Saved in:
Published in: | Applied physics letters 2015-07, Vol.107 (1) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The double perovskite Yb{sub 2}CoMnO{sub 6} has been synthesized with an almost perfect checkerboard arrangement of Co{sup 2+} and Mn{sup 4+} cations in the B-sublattice of the perovskite cell. It presents an anomaly in the electric capacitance and a strong magneto-dielectric effect at about 40 K whose interplay with the microscopic magnetic behavior has been investigated by means of neutron diffraction, magnetization, pyroelectric, and relative dielectric permittivity measurements. We show that the onset of an E-type antiferromagnetic ordering of Co{sup 2+} and Mn{sup 4+} moments monitored by neutron diffraction provokes the noticeable jump of the relative dielectric permittivity (∼9%) at about 40 K. It is also shown that this jump can be totally suppressed by application of a magnetic field of μ{sub 0}H = 5 T. Neutron experiments and magnetic measurements confirm that such a suppression leading to a significant magneto-dielectric effect is driven by a metamagnetic phase transition from the peculiar E-type ordering of 3d moments into a collinear ferromagnetic order. Pyroelectric current measurements do not show any spontaneous electric polarization, so the large dielectric anomaly at zero field cannot be ascribed to a ferroelectric ordering. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4926403 |